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ON DOMAINS OF MONOGENICITY
IN CLIFFORD ANALYSIS

Richard Delanghe, Freddy Brackx and Willy Pincket

1. Introduction

One of the basic problems encountered when passing from holo-
morphic functions of a single complex variable to holomorphic func-

tions of several complex variables is caused by the fact that not
any domain in ch (n>1) is a domain of holomorphy, as it is the case
in the complex plane. As is well known'a classic counterexamnle is
provided by the Hartogs Extension Theorem stating that any function
which is holomorphic in ©\K, where @cc™ is open, K is compact
and Q\ K is connected, may be extended to a holomorphic function in
Q.

Let us recall a classical characterization of domains of holomor-
phy in c".
Theorem. If @ is a domain in ¢™ then the following conditions are
equivalent ":
(i) @ is a domain of holomorphy;
(ii) @ is holomorphically convex, i.e. for each comnact subset

KcQ its holomorphic hull §Q={zen:|f(z)k32£|f(u)|, for all

feo(Q)} is again compact;
(iii)there exists a function f€0(Q) which cannot be continued holo-
morphically beyond @, i.e. Q is a holomornhic existence domain.
The aim of this paper is to investigate if, such as in the
complex plane, any domain in ™! (m>1) satisfies all of the three
conditions mentioned above, with respect to the monogenic functions.
It can be shown in a straightforward manner that any domain © in

+ . . PR . o
R™! is a domain of monogenicity (§2) and that it is moreover mono-

"This paper is in final form and no version of it will be submitted
for publication elsewhere".
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genically convex (§3); but it is not known yet if for each domain
cR™ ! there exists a monogenic function in @ which cannot be exten-
ded monogenically beyond Q. Nevertheless in section 4 some sufficient

1

L . . m+ . R
conditions are given for a domain QCR to be a monogenic existence

domain.
For the definitions and proverties concerning the monogenic-func-

tions the reader is referred to [3].

2. Domains of monogenicity.

DEFINITIONS 2.1. Let 9 be a domain in R™ '.

(i) @ is called a weak domain of monogenicity if for each domain

2'20 there exists a monogenic function in Q which is not the
restriction to @ of a monogenic function in Q';

(ii)Q is called a domain of monogenicity if it is impossible to
find two domains U, and U, satisfying the followiﬁp two con-
ditions .

(a) ¢#U,CQnU,GU,;
(b) for each monogenic function f in @ there exists a monoéenic

function ¥ in U, such that f=f on U,.

REMARK. Clearly any domain of monogenicity is also a weak domain
of monogenicity. The fact that both notions coincide is a conseauen-

ce of the following theorem.
THEOREM 2.2. Every domain in R™' is a domain of monogenicity.

Proof. Let 9c#™ ' be a domain which is not a domain of monogenicity.
Then there exist two domains U, and U, satisfying the conditions

(a) and (b) of Definition 2.1.(ii). Call U} the comnonent of U,NQ
which contains U, and let the points a€U, and beU,\ Q be joint by
means of a polygonal line T in U,. Take c€TN3Q. The function
g(x)=—%=

- Ix_c|m+l

is monogenic in @ , so, by the hypothesis made, there exists a
function E, monogenic in U,, for which g=p on U, and also on U}
by analytic continuation. Now, as g is monogenic in U,, we have
lim é(x)=§(c), while lim|g(x)|o=+», clearly a contradiction. «
x->C X-+C

X€eT XETNQ
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REMARK. The proof of the above theorem depends heavily unon the
existence of pointwise singularities. As in the more general two
Clifford-variable theory of the biregular functions (see e.g.[1])
pointwise singularities do not occur anymore, it is expected that,
in analogy with complex analysis, the study of the so-called domains
of biregularity will be far from trivial (see [2]).

3. Monogenic convexity
DEFINITION 3.1. Let Q@ be a domain in Rm+l, let K be a compact
subset of @ and let F be a family of left-monogenic functions con-
taining the functions £i=x

;€0-X0€;5, i=1,...,m. The F-convex hull of

K is the set kF given by

RF={XGQ:|f(x)|°<sup|f(u)|u, for all fefF}
uek

In the particular case where F=M(Q), i.e. the whole family of all
left monogenic functions in @, RF is called the monogenic hull of K
and denoted by ig.

The following pronerties of the F-convex hull are inmediate.

PROPOSITION 3.2. Let Q,K and F be as in Definition 3.1. Then
(i) Ky is relatively closed in Q;
(ii) KcKy and sup|f(x)|,=sup-|f(x)|, for all feF;

xeK X€Kf

(iii) if F1CF2 then krchFl.

DEFINITION 3.3. A domain QCR™' is called F-convex if for each Kcgq
compact, the F-convex hull RF is again a compact set. In the parti-
cular case where F=M(Q) the domain Q is called monogenically convex.

THEOREM 3.4. Every domain in Rm+1 is monogenically convex.
Proof. Let KcQ be compact. In view of Proposition 3.2 it suffices
to prove that X co . For ueR™ '\ q the function

Q
x-u . <
g(x)= o7 is left-monogenic in @ and so
|x-u|
sup |g(x)|Fsup|g(x)|, or sup L —=sup =
x€K x€Kq xeK [x-u|” xeKg|x-u|
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for any uERm+1\Q.

Hence 0<1nf|x u| = inf|x-u|
x€K XGKQ
ue m"-l\Q ERm+1\Q

d(K,Rm*‘\Q)=A(RQ,Rm“\9)>o. .

4, Monogenic existence domains

DEFINITION 4.1. Let Q be a domain in ™'

(1) Q is called a weak monogenic existence domain for the

monogenic function f in @ if for each monogenic function
F in @, where Q' is a domaiﬁ strictly containing @, F|Q#f.
(ii) @ is called a monogenic existence domain for the monogenic
function f in Q@ if for each pair of domains U, and U, for
which ¢#U2CQﬂUlgU1,‘and for each monogenic function F in U,,
F|U,2£|U,.
(iii) @ i§ called a (weak) monogenic .existence domain if there
exists a monogenic function f in @ for which Q is a (weak)
monogepic domain.

REMARKS .

(i) The first definition 4.1.(i) states that the function f cannot
be extended monogenlcally beyond the boundary of 2. Definition
4.1(ii) has a local character and ‘implies that the result of
a monogenic exten51onnught be a multi-valued function.

(ii) It is clear that a (weak) monogenic existence domain is also
a (weak) domain of monogenicity. Moreover it is obvious that
a monogehic existence domain is also a weak monogenic existence
domain. Under an additional condition on Q@ both notions can be
made to coin;ide. To be more precise '

PROPOSITION. 4.2, If the donain Q@ is locally connected then for
a monogenic- functlon f in ﬂ the following statements are equivalent:
(i) @ is a monogenlc existence domain for f;

(ii) @ is a weak monogenic existence domain for f.

As already mentloned in- the 1ntroduct10n it is not known yet if

+1
is a (weak) monogenic ex1stence domain.

any domain in "
Nevertheless it will be shown explicitly that a smecial class
of monogenically convex doma1ns are indeed monogenic-existence

domains. .
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DEFINITION 4.3. Call 2M(Q) the family of functions such that

(i) f is left-monogenic in ﬁ;
(i1) |f. f|-|f|2,w1th L£1=2772 €],
n .
(iii) all the functions f2, n€y , satisfy-(i) and (ii).

Notice that in the complex case this family consists of all holomor-
phic functions in Q. . .

That ZM(Q) is not emnty may be 111ustrated by the following examples :
any monogenic function in @ of the form f(x)eu+g(x)ei (0<igm), or
f(x)ep+g(x)e, eJ (0<i<j<m), f and g being real-valued, belongs to
M(Q). In nart1cular the hynercomplex variables £ (1<i<m) all belong
to M(Q). '>

Now we construct in a ,M(Q)-convex domain a very mneculiar monogenic
function.

THEOREM 4.4. Let a#r™"! be 2M(Q) -convex. Then there exists a monoge-

nic function F in Q satisfying the following condition : for each
point xeq with rational coordinates there exists a sequence

(x(\’))‘;:1 in B(x,d(x,3Q)) on which F is unbounded.

Proof. Take all points in Q with rational co-ordinates (n(\)))$=1
and arrange them as follows

WM =), 1 (&) () () () GGy,
Put U B(w(v) d(w(v) 3)) ;- then by definition we have U;n3Q+#¢ , and
SO we may construct a sequence (wy u)) in U, converging to a point
of 3qQ. ’

Consider the ¢ompact exhaustlon (KA)A of Q. As Q is zM(Q)-coﬁmex,'
](l , oM is compact; hence there exists a function ?,GZM(Q) and a

point x(1)=w£”1) such that xlﬁkl M

and 1%, (’x(l))l,,>sun I£1 (ud]o.
U . u€k ,
After dividing by a suitable .real ﬁumber we can reduce~¥, to
f1€,M(Q) for which : .- ' .
27 25up £, () |o<1<2 21 £, (x )y .
uEKl : . ‘
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Alsozc(IJ is contained in a certain KA which is called now KX(t)'

=12

Proceeding in the same way, we may define sequences (x(v)):

(K, (yy)oey and (£)3., such that x(v)EUvﬂ(Kx(v+l)\Kx(v)’zn)
and 2712 sup ifv(u)lu<l<2-n/2|fv(x(v))lo.
uGKA(v)

In view of the structure of the M(Q)-functions one now determines

inductively a sequence of natural numbers (av):=1 such that

a

VFY , (V+1 a v+

EPetT - b I I F S OO I
- I > v+l.
(v+1)2 a=1 a?
o f2a(x)

The series ¥ —-%*—— 1is normally convergent in @, and so

a=1 a?

represents a monogenic function in Q, say F. However it may be
shown that ]F(x(v))|o>v-c, C being a positive constant.

Now take an arbitrary point x in @ with rational co-ordinates;
then x coincides with a certain ﬁ(Vy) and this yields by construc-
tion a subsequence (w(\’u)):=l of,(ﬁ(vhz=l such that
w(vu)=n(v°)=x for all p=1,2,..., whence the corresponding sub-

sequence (x(vu))§= is obviously contained in

1

u,  BoOW,amM),20))=B(x,d(x,0m))
n

and has the property that |F(x(vu))|0>vu-c. .
Now we study the behaviour of F on the boundary of Q.

PROPOSITION 4.5. With the same notations as in Theorem 4.4 we have
for any neof,

Timl F(x) | g=+w.

X-’n

XEQN

]

Proof. Take a sequence (u(“)):= in Q@ converging to n; then we

1
v )
may select a sequence (n( U))u=1 such that IU(U)'n(vu)|<%-
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Reviewing the construction of (w(V))‘;’=l we may find a subsequence
(W(Vx)):=1 for which w(3)=n(V,), and clearly

lim w(vk)=n.

Ao
On the other hand, analyzing the proof of Theorem 4.4, we have that
|x(vk)-w(vl)|<d(w(vl),39), x™) being the point corresponding to

w(vk), and so limAx(vX)=n.

A=

As moreover |F(x(vx))|o>vx-c, we obtain that

lin e (x (V2%

0=+, o
In the same way as for Theorem 2.2 we may now prove

THEOREM 4.6. If @ is a ,M(Q)-convex domain in Rm+l, then it is a
monogenic existence domain.

EXAMPLES.

(i) Take an arbitrary domain w in a co-ordinate plane of ™' and
consider a tube domain of the form Q=wxR" '. As each comnact
subset K of Q can be written as a subset of a certain K'xg™ !
K' being compact in w, we have that ang;me_l, Ré be?nghthe
holomorphically convex hull of K'. As K& is compact and K.
is bounded and relatively closed in @, it follows that K, is
compact in Q. So Q is ,M(Q)-convex and hence a monogenic
existence domain.

(ii)we any from [ 3], Proposition 15.7.4 that the series

]
F(x)= ¢ p(x)a', where p(x)=£1+...+£m, converges normally in the
a=o0

. +1
tube domain Q={xer™ :(x,+...+xm)2+ mx3<1}
Moreover it can be proved that,this series becomes unbounded

on 3Q ,whence Q is a monogenic existence domain for the function
F.

REMARK. The family ,M(Q) may be replaced by any larger family of
monogenic, functions f which possess in Q@ an infinite number of
monogenic powers f*, qelcny, satisfying the supplementary condition
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o
| £ |=lf|a for all o€l. Convexity with respect to that new family

will also be sufficient for 'a domain to be a monogenic existence
domain.
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