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ON DOMAINS OF MONOGENICITY 
IN CLIFFORD ANALYSIS 

Richard Delanghe, Freddy Brackx and Willy Pincket 

1. Introduction 

One of the basic problems encountered when passing from holo-
morphic functions of a single complex variable to holomorphic func­
tions of several complex variables is caused by the fact that not 
any domain in Cn (n>1) is a domain of holomorphy, as it is the case 
in the complex plane. As is well known'a classic counterexample is 
provided by the Hartogs Extension Theorem stating that any function 
which is holomorphic in ft\K, where ftcOn is open, K is compact 
and ft\ K is connected, may be extended to a holomorphic function in 
ft. 

Let us recall a classical characterization of domains of holomor­
phy in Cn. 
Theorem. If ft is a domain in Cn then the following conditions are 
equivalent ": 

(i) ft is a domain of holomorphy; 
(ii) ft is holomorphically convex, i.e. for each compact subset 

Kcft its holomorphic hull K =-{zeft: | f (z)|<surj | f (u) | , for all 
" uek 

f e 0 ( f t ) } is again compact; 
(iii)there exists a function feO(ft) which cannot be continued holo­

morphically beyond ft, i.e. ft is a holonornhic existence domain. 
The aim of this paper is to investigate if, such as in the 

complex plane, any domain in Rm * (m>1) satisfies all of the three 
conditions mentioned above, with respect to the monogenic functions. 
It can be shown in a straightforward manner that any domain ft in 
R is a domain of monogenicity (§2) and that it is moreover mono-

"This paper is in final form and no version of it will be Submitted 
for publication elsewhere". 
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genically convex (§3); but it is not known yet if* for each domain 

ftc/?
m
 there exists a monogenic function in ft which cannot be exten­

ded monogenically beyond ft. Nevertheless in section 4 some sufficient 

conditions are given for a domain ftcH to be a monogenic existence 

domain. 

For the definitions and pronerties concerning the monogenic*-func­

tions the reader is referred to [ 3] . 

2. Domains of monogenicity. 

DEFINITIONS 2. 1 . Let I] be a domain in i?
m+1
. 

(i) ft is called a weak domain of monogenicity if for each domain 

ft'^ft there exists a monogenic function in ft which is not the 

restriction to ft of a monogenic function in ft'; 

(ii)ft is called a domain of monogenicity if it is impossible to 

find two domains U
2
 and U

2
 satisfying the following two con­

ditions : 

(a) 0*U
2
cft nu-SU-.; 

(b) for each monogenic function f in ft there exists a monogenic 

function ? in Ui such that f=f on U
2
. 

REMARK. Clearly any domain of monogenicity is also a weak domain 

of monogenicity. The fact that both notions coincide is a consequen­

ce of the following theorem. 

THEOREM 2.2. Every domain in Rm
 is a domain of monogenicity. 

Proof. Let ftcv be a domain which is not a domain of monogenicity. 

Then there exist two domains Ui and U
2
 satisfying the conditions 

(a) and (b) of Definition 2.1. (ii). Call UJ the component of U
x
nft 

which contains U
2
 and let the points aeU

2
 and beU^ ft be joint by 

means of a polygonal line r in Ui. Take cemaft. The function 

g(x)= * - ' 
|x-c| m+i 

is monogenic in ft , so, by the hypothesis made, there exists a 

function g, monogenic in Ui, for which g=g on 1J
2
 and also on U

2 

by analytic continuation. Now, as g is monogenic in U
x
, we have 

lim g(x)=g(c), while liml g(x) I
 0

= + o
° - clearly a contradiction. • 

x-+c x+c 
xєг xєгnft 
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REMARK. The proof of the above theorem depends heavily unon the 

existence of pointwise singularities. As in the more general two 

Clifford-variable theory of the biregular functions (see e.g.Ml) 
pointwise singularities do not occur anymore, it is expected that, 

in analogy with complex analysis, the study of the so-called domains 

of biregularity will be far from trivial (see [ 2]). 

3. Monogenic convexity 

DEFINITION 3.1. Let ft be a domain in Rm+1, let. K be a compact 

subset of ft and let F be a family of left-monogenic functions con­

taining the functions ^i=x.e0-xoei, i=1,...,m. The F-convex hull of 

K is the set Kr given by 

KF={xGn:|f(x) |0<sup|f(u)|0, for all feF} . 
r uek 

In the particular case where F=M(ft), i.e. the whole family of all 
left monogenic functions in ft, Kr is called the monogenic hull of K 

and denoted by K^. 

The following properties of the F-convex hull are inmediate. 

PROPOSITION 3.2. Let ft,K and F be as in Definition 3.1. Then 

( i ) Kr is relatively closed in ft; 

( i i ) KcfCr and sup | f (x) | 0=sup. | f (x) | 0 for all feF; 
xeK XGKF-

( i i i ) if Fi CF2 then Kr CKr . 

DEFINITION 3.3. A domain ftCi?m+1 is called F-convex if for each Kcft 

compact, the F-convex hull Kr is again a compact set. In the parti­

cular case where F=M(ft) the domain ft is called monogenically convex. 

THEOREM 3.4. Every domain in Rm l is monogenically convex. 

Proof. Let Kcft be compact. In view of Proposition 3.2 it suffices 

to prove that K eft . For ueHm *\ ft the function 

g(-0 = ^TTT is lef t-monogenic in ft and so 
| x -u | m + 1 

sup |g(x) |=sup |g(x) | 0 or sup —^—5TSU2 — ~ 
xek '" ° xEKpT " xek fx-u|m xEkn |x-u| J 
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for any uGH"1"1" \ o,. 

Hence 0 < i n f | x - u | = i n f | x - u | 
xGK xeKQ 

uel?m+1\ft ue*m + 1 \ f t 

d(K, l? m + 1 \ f i )=4(K f i , i ? m + 1 \n)>0. . 

4. Monogenic existence domains 

DEFINITION 4.1 . Let si be a domain in i?m+1. 

(i) ft is called a weak monogenic existence domain for the 

monogenic function f in ft if for each monogenic function 

F in fl , where ftf is a domain strictly containing ft, Flft^f. 
(ii) ft is called a monogenic existence domain for the .monogenic 

function f in ft if for each pair of domains U] and U2 for 
which 0=5-U2cftnu1c.U1 , and for each monogenic function F in Ux , 
F|U2*f |U2." 

(iii) ft is called a (weak) monogenic.existence domain if there 
exists a monogenic function f in ft for which ft is a (weak) 
monogenic domain. 

REMARKS. 

(i) The first definition 4.1.(i) states that the"function f cannot 
be extended monogenically beyond the boundary of ft. Definition 
4.1.(ii) has a local character and implies that the result of 
a monogenic extension might be a multi-valued function. 

(ii) It is clear that a (weak) monogenic existence domain is also 
a (weak) domain' of monogenicity. Moreover it is obvious that 
a monogenic existence domain is also a weak monogenic existence 
domain. Under an additional condition on ft both notions can be 
made to coincide. To be more precise : 

PROPOSITION. 4.2. If the domain.ft is locally connected then for 
a monogenic-function f in ft the following statements are equivalent: 
(i) ft is a monogenic existence domain for'f; 
(ii) ft is a weak monogenic existence domain for f. 

As already mentioned in- the introduction it is not known yet if 
any domain in i?m 1 is a (weak) monogenic existence domain. 
Nevertheless it will be shown explicitly that a special class 
of monogenically convex domains are indeed monogenic existence 
domains. 
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DEFINITION 4.3. Call 2M(ft) the family of functions such that 

(i) f is left-monogenic in ft; 

( i i ) J f . f | = | f |2 , with | f | = 2 ; n / 2 | f | 0 ; 

(iii) all the functions f2 , ne// , satisfy-(i) and (ii) . 

Notice that in the complex case this family consists of all holonor-

phic functions in ft. 

That 2M(n) is not empty may be illustrated by the following examples : 

any monogenic function in ft of the form f(x)e0+g(x)e- (0<i<m) , or 

f (x)e0
 + g(x)e .e . (0<i<j<m) , f and g being real-va.lued, belongs to 

2M(ft) . In particular the hypercomplex variables £ . (Kkm) all belong 

to 2M(ft) . •* 

Now we construct in a 2M(ft)-convex domain a very peculiar monogenic 

function. 

THEOREM 4.4. Let ft=5-/?m+1 be 2M(ft) -convex. Then there exists a monope-

nic function F in ft satisfying the following condition : for each 

point xeft with rational coordinates there exists a sequence 

(x̂  ) v = in B(x,d(x,8ft)) on which F is unbounded. 

Proof. Take all points in ft with rational co-ordinates (n )v=i 

and arrange them as* follows : 

. ( w ^ = 1 = (n
(l>,n^,n^,n(,\n^,n^,nCl\...). 

Put U -=B(w^v^ ,d(w^v) ,9ft)) ; then by definition we have Uin9ft*0 , and 

so we may construct a sequence (wf*1-')" in Ui converging to a point 

of an. * 

Consider the Compact exhaustion (K\)\ = 1 of G. As n is 2M(ft) -conv.ex, 

Kj w is compact; hence there exists a function fxe2M(n) and a 

point x(l)--w(yi) such that x-£K M and '| f - ( x ^ )|0>sup |fi(u)J0. ' 
U^K 1 

After dividing by a suitable real number we can reduce fi to 

fie2M(n) for which 

2"n/2suP |fi(u)|,<K2-V2|fi(x(l))|0. . 
u6Ki 
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Alsox^ * is contained in a certain K^ which is called now K w ^ . 

f v) °° Proceeding in the same way, we may define sequences (x^ ;) p 

(1Wv-. and (Vv-i SUCh that x(V)eUvn(KX(v+I)^
KX(v))2M^ 

and 2" n / 2 sup |f fu)|,<1<2-n/2|fv(x
(v>)|,. 

uGKX(v) 

In view of the structure of the 2M(ft)-functions one now determines 
oo 

inductively a sequence of natural numbers (a ) such that 

| f ^ ( V + l ) ) L v |fa«(x^+'))|0 
- - . r : >v+i. 

(v+1)2 0=1 a2 

. fa«(x) 
The series z — is normally convergent in ft, and so 

represents a monogenic function in ft, say F. However it may be 
shown that |F(x^v^)|0>v-C, C being.a positive constant. 
Now take an arbitrary point x in $ with rational co-ordinates; 
then x coincides with a certain rfrvo) and this yields by construc­
tion a subsequence (w^vvr)°°_ of ,(w^v^°°_ such that 

w^vu =n =x for all y=1,2,..., whence the corresponding sub­
sequence (x^vy')co

= is obviously contained in 

Uv B(wfvy) ,dfw(;vy^,9ft))=B(x,d(x,9ft)) 
y 

and has the property that |F(x yJ)|0>v -C. • 

Now we study the behaviour of F on the boundary of ft. 

PROPOSITION 4.5. With the same notations as in Theorem 4.4 we have 
for any neSft, 

TTmlF(x) I 0=+oo. 
*-*n 
XGft 

ful °° ' 
Proof. Take a sequence (û  ) u = 1 in fi converging to n; then we 

may select a sequence (nA u^)y=i such that | u ^ - n y |<y» 
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Reviewing the construction of (w^v>')00_ we may find a subsequence 

(w^))? for which w(vA^ =n ̂ vy' > a n d clearly 
A - 1 

lim ir ^=ri. 
A-*oo 

On the other hand, analyzing the proof of Theorem 4.4, we have that 

|x^ A^-w^ AJ|<d(w^ A',8ft), x^vA^ being the point corresponding to 

w^ Â  y and so lim .x
v A^=n. 

A->co 

As moreover |F(X^ AJ)| 0>V^-C, we obtain that 

lim iFfx^A^I o=+co. B 
A-*oo 

In the same way as for Theorem 2.2 we may now prove 

THEOREM 4.6. If A is a 2M(fi)-convex domain in i?
m+ L , then it is a 

monogenic existence domain. 

EXAMPLES. 
ri+ -(i) Take an arbitrary domain w in a co-ordinate plane of R and 

consider a tube domain of the form ft=a)Xi? . As each compact 

subset K of ft can be written as a subset of a certain Kfxi?m l , 

Kf being compact in w, we have that K0cK
fxi?"-1, Kf being the 

holomorphically convex hull of Kf. As Kf is compact and K* 

is bounded and relatively closed in ft, it follows that Kn is 

compact in ft. So ft is 2M(ft)-convex and hence a monogenic 

existence domain. 

(ii)We know from [31, Proposition 15.7.4 that the series 

F(x)= I p(x) a #, where p(x)=£i+...+£ , converges normally in the 
a=o . 

tube domain ft={xel?m+1 : (xx+ . . .+x )
 2 + mxo<1 } 

Moreover it can be proved that,this series becomes unbounded 

on 8ft ,whence ft is a monogenic existence domain for the function 

F. 

REMARK. The family 2M(ft) may be replaced by any larger family of 

monogenic^ functions f whicji possess in ft an infinite number of 

monogenic powers f01, ae Ic.V, satisfying the supplementary condition 
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If l=|f| for all <xei. Convexity with respect to that new family 

will also be sufficient for a domain to be a monogenic existence 

domain. 
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