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Twistor theory, self-duality and integrability 

L. J. Mason 

June 3, 1996 

Introduction 

Since these lectures were given, a book containing much of the material presented in 
these lectures has appeared, Mason and Woodhouse (1996). The following contribution 
will therefore just be a brief summary of the lectures and the reader is referred to the 
book for a full presentation and the details. 

A basic aim of twistor theory is to study correspondences between solutions of phys­
ical field equations on space-time (such as the Yang-Mills or Einstein equations) and 
deformations of holomorphic structures on twistor space. The idea is to reformulate 
basic physics in terms of holomorphic structures on twistor space. The hope is that 
this formulation will lead to the theory that unifies quantum theory and gravity in 
much the same way that classical mechanics (at least with hindsight) can be seen to 
contain the imprint of quantum mechanics. 

So far such correspondences only exist in satisfactory form for the self-dual Einstein 
and self-dual Yang-Mills equations, Penrose (1976) and Ward (1977) respectively. In­
deed these constructions are to a large extent what has motivated the current form of 
the twistor programme. The twistor programme is still a long way from being realized 
in this form. However, these constructions have had substantial spin-offs in differen­
tial geometry and in the theory of nonlinear integrable or soluble equations. It is this 
latter spin-off that this article focuses on. 

A first definition of an integrable or soluble nonlinear differential equation might 
be that such equations are those for which explicit procedures are available to find a 
dense class of solutions, and for which powerful methods exist for the analysis of the 
general solution. In this sense, the twistor constructions for the self-duality equations 
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provide just such a general solution and to a large extent they provide the underlying 
reason for the phenomena of integrability. A reason for this arises from the fact, as a 
series of authors, Ward (1985), Hitchin (1987), Mason and Sparling (1989), Mason and 
Woodhouse (1993) have observed, that 'most' key integrable systems are symmetry 
reductions of the self-duality equations. Thus they each inherit a twistor correspon­
dence, the appropriate symmetry reduction of that for the self-duality equations and 
this provides the theory underlying these equations. 

These ideas have led to the following programme: 

• Classify integrable systems as symmetry reductions of the self-duality equations 
(where possible). 

• Obtain the theory of such equations from the symmetry reduction of the twistor 
correspondence for the self-duality equation. 

This programme is the subject of the book Mason and Woodhouse (1996), and full 
details of the ideas sketched below can be found there. 

What is an integrable system? 

Unfortunately there is not a very systematic definition of integrability. There is no 
shortage of examples, or indeed definitions, but the equivalence and general validity 
of the definitions is far from established. The first four items following form part of 
the standard concept of integrability with the fifth being a definition suggested by the 
above programme. 

1. As above, an integrable system is a system of (partial) differential equations 
that, in spite of their nonlinearity, are remarkably easy to solve; often there is 
a dense class of exact solutions and general constructions, such as the inverse 
scattering transform, for the analysis of the general solution. One.can often 
reduce the construction of the general solution to the solution of linear auxiliary 
equations. Solutions tend to behave in a very regular way and the effects of 
the self-interaction of the field is mild (i.e. two lump or soliton solutions might 
pass over each other with only a phase shift as a memory of the interaction). In 
particular, if the system exhibits chaotic or ergodic behaviour it is usually taken 
not to be integrable. This definition is often what one means in practice despite 
its vagueness. 

2. An integrable system is a Hamiltonian system in 2n-dimensions on a sym-
plectic manifold M2n with Hamiltonian H and n explicitly given constants 
H = Hi,...Hn, of the motion in involution, {Ht-,Hj} = 0 where {,} is the 
Poisson bracket. For a general differential equation in 2n dimensions, one needs 
2n — 1 constants of the motion to solve it by quadratures. However in symplectic 
geometry, constants of the motion in involution have a secondary role as symme­
tries of the original system, so one only needs half as many. This is formalized 
in Arnold's version of Liouville's theorem: 

Theorem 1 Suppose that we are given a Hamiltonian system with n constants 
of the motion in involution as above, and suppose that the map Hi : M2n i-> R n 
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is regular and proper at ct- £ Rn, then the submanifold Hi = Ci is a Lagrangian 
torus with a canonical linear structure and there is a coordinate transformation 
to 'action-angle' variables (#.-,P) by quadratures such that (1) the coordinates 
are canonical, {P>0j} = £*• with all other Poisson brackets vanishing and 0t- are 
linear angle coordinates on the tori of constant Hi and (2) the flows are given 
by P = 0 and 6i are constant. 

Thus the system can be completely solved by quadratures. This is one of the most 
attractive definitions, but is awkward to apply to partial differential equations as 
it requires a full phase space formulation. This brings the boundary conditions 
into the concept of integrability which seems unnatural, and furthermore makes it 
rather awkward to apply the idea to elliptic equations. Remarkably, however, this 
definition can be made precise in the infinite dimensional context of integrable 
nonlinear parabolic and hyperbolic partial differential equations. 

3. An integrable system is a system of equations that admits a 'Lax pair'. That 
is, the equation can be expressed as the integrability condition for an auxiliary 
system of over-determined linear differential equations. This is most easily il­
lustrated by means of the famous example of the Korteweg de Vries equation 
below. 

The existence of a Lax pair is not a sufficient condition for integrability. For 
example, the full Einstein equation admits a linear system representation in the 
form of the Rarita-Schwinger equations. A criterion that fails in this example 
but that is fulfilled for all integrable systems that I am familiar with is that the 
linear system should propagate data for its solutions across an initial data surface 
for the full nonlinear integrable equation. Thus, it should be so over-determined 
that its data surfaces have codimension-2 rather than 1. 

4. An integrable system is a system of equations that satisfies the Painleve prop­
erty. This property in effect states that all non-characteristic singularities in 
the complex that are movable (in the sense that their location depends on the 
initial conditions) should be forced by the equations to be rational. This leads 
to what has become known as the Painleve test for integrability. One form is to 
substitute in a power series in the time variable t into the equations to obtain 
recurrence relations on the coefficients. When the equation is integrable, the re­
currence relations force the powers of t in the series to be integral and coefficients 
of terms that might lead to log terms in the expansion should also be forced to 
vanish. This test is very powerful in practice, but the theoretical underpinnings 
are still obscure. 

5. My preferred definition of an integrable system is that it is a differential equation 
that admits a twistor correspondence. This raises the question of the definition 
of a twistor correspondence. If the definition is sufficiently loose one can certainly 
incorporate all integrable systems since, by the solubility criteria, an integrable 
equation must have some associated theory that one can exploit to solve the 
equations. What is remarkable is the wide applicability of symmetry reductions 
of the standard twistor correspondences. Indeed, these apply to the vast majority 
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of key examples of integrable systems. There are two families that require an 
extension of the standard correspondence, one based on the Landau-Lifschitz 
equation and the other based on the KP equations. The relevant extensions for 
the Landau-Lifschitz equations are discussed in Carey, Eastwood, Mason and 
Singer (1994) and the extensions for the KP and Davey Stewartson equations 
are discussed in §12.6 of Mason and Woodhouse (1996) and Mason (1995). 

Part I: Classification 

Because of the difficulties in the basic definition of integrability many presentations 
proceed by listing some of Ihe key examples. In the following I list some of the more 
famous integrable systems and how they can be obtained as reductions of the self-dual 
Yang-Mills equations. 

The first part of the above mentioned programme is to classify integrable systems 
as reductions of the self-duality equations. The classification proceeds by listing the 
ingredients required in the reduction. In the case of the self-dual Yang-Mills equations 
these are (a) a choice of symmetry subgroup of the conformal group (the symmetry 
group of the self-dual Yang-Mills equations) and action of the symmetry on the bundle 
(b) a choice of gauge group, (c) a choice of gauge and (d) a choice of certain constants 
of integration that arise when some of the reduced equations can be integrated directly. 

Dimension 1: Ordinary differential equations. 

These arise when one imposes a symmetry on the self-dual Yang-Mills equations with 
three-dimensional orbits. The reductions one obtains split roughly into two types 
according to whether one uses translational symmetries or more general conformal 
symmetries. In the first case, one obtains equations that are autonomous (i.e. in­
variant under time translation) that are generalizations of the spinning top equations 
and in the second one obtains time dependent equations that generalize the Painleve 
equations. See chapter 7 of Mason & Woodhouse (1996). 

1. Spinning tops. These equations describe the motion of a rigid body spinning 
about some fixed point. The most celebrated example is that of the Euler top 
which is fixed at its centre of mass. In line with the Hamiltonian definition of 
integrability, the phase space is the cotangent bundle of SO(3). For integrability 
we require three constants of motion. One always has the total energy and the 
total angular momentum about the point of suspension, so we only require one 
'unexpected' constant. In the case of the Euler top the angular momentum along 
the z-axis in space is the third constant. 

For the Euler top, the equations for the components of the angular velocity rela­
tive to the body, (LOI, 0:2,^3) decouple from those for the configuration variables 
and we obtain 

cJi — (A2 — A3)u;2^3 

and its cyclic permutations where At- are the reciprocal moments of inertia. The 
total energy and the total angular momentum are quadratics in the o>,*. Thus, if 
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we complexify and compactify R3 to QP3, we see that the flow is restricted to the 
intersection* of two quadrics, an elliptic curve. Furthermore, the field equations 
separate to give 

dt= ^ 
(A2 — A3)u;2u;3 

and cyclic permutations and this defines a global non-vanishing 1-form on the 
elliptic curve. Thus the solutions are given by elliptic functions. 

The other integrable tops are the Lagrange and Kovalevskaya tops, the latter 
found by what has subsequently become known as Painleve analysis. Again the 
general solution can be obtained in terms of (hyper)-elliptic functions. 

These arise from the self-dual Yang-Mills equations by imposing three transla-
tional symmetries tangent to non-null hyper-planes. The Euler top arises from 
the simplest gauge group, 50(3) , the Lagrange top from 50(3 ,1) after an addi­
tional Z 2 symmetry has been imposed and the Kovalevskaya top from 50(3 ,2 ) , 
again after a Z 2 symmetry has been imposed. The Euler equations can also 
be obtained from 3 translational symmetries tangent to a null hyper-plane also 
and this reduction generalizes to the integrable case of rigid rotations of an n-
dimensional top about its centre of mass when a larger gauge group is chosen. 

2. The Painleve equations. Painleve classified all the second order ordinary dif­
ferential equations rational in the dependent variable and its first derivative. 
Of the 50 or so equations in the classification, six new equations required new 
transcendental functions for their solution (the others being soluble with known 
functions). 

To obtain these from the self-dual Yang-Mills equations, one imposes symmetry 
under an abelian three dimensional symmetry group that is non-degenerate in an 
appropriate sense. The different choices of symmetry group classify the different 
Painleve equations except for the first and second which are distinguished by a 
choice of constant of integration. See Mason & Woodhouse (1996) chapter 7 for 
full details. 

Dimension 2. 

The most celebrated integrable systems are those in 2-dimensions. Those that are 
autonomous (i.e. admit a full translation symmetry group) are obtained from the self-
dual Yang-Mills equations by symmetry reduction by two-dimensional translational 
symmetry groups. Such symmetries can be classified by the rank (and signature) of 
the metric restricted to the two-plane spanned by the translations. 

If the two-plane is non-degenerate, one obtains various forms of the harmonic map, 
or wave map equation with values in the gauge group or complexified gauge group 
divided by the real gauge group. With further discrete symmetries, one can obtain 
harmonic maps into Riemannian symmetric spaces (when the discrete symmetry is 
Z2) or the periodic Toda lattice (when the gauge group is SL(n) and the discrete 
symmetry is Z n acting appropriately on the bundle). 
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If the two-plane is null but with non-vanishing metric, one obtains equations that 
are Galilean invariant. For gauge group contained in iSX(2, C) we obtain the key 
examples of the nonlinear Schrodinger equation and the Korteweg de Vries equation. 

This latter equation describes the evolution with respect to time t of water waves 
with height u(x,t) in a shallow channel parametrized by x. The equation arises from 
the compatibility conditions between the operators 

L = dl + u + \, M = dt-3l- ^udx - ^ux. 

We have 
[L, M] = 0 <=> 4ut = uxxx + 6uux, 

the Korteweg de Vries equation. 
For larger gauge group one obtains various generalizations including parts of the 

Drinfeld-Sokolov and Zakharov-Shabat hierarchies. 
When the translation symmetry group is tangent to totally null anti-self-dual two-

planes, one obtains systems such as the Wess-Zumino-Witten equations, the n-wave 
equations and various other parts of the Drinfeld-Sokolov and Zakharov-Shabat hier­
archies. 

Full details of these reductions, and others, are discussed in chapter 6 of Mason and 
Woodhouse 1996. Chapter 5 contains reductions by a single symmetry, which yields 
various forms of the Bogomolny equations for magnetic monopoles and degenerate 
analogues of the Davey Stewart son and KP equations. Chapter 13 studies reductions 
of the various self-duality equations on a conformal structure. These also yield many 
familiar examples of integrable systems, although the procedure there is restricted to 
giving systems with gauge group contained in SL(2, C). 

Part II: theory of integrable equations 

The direct relationship with the self-duality equations allows one to unify the theory of 
integrable equations. One can establish a body of theory for the self-duality equations 
and then check that the results and structures survive symmetry reduction to yield 
the analogous theory for the reduced equation. There is a large body of theory and 
many techniques to be understood in this way. For example, one characterization 
of integrability in the Hamiltonian context is the existence of a recursion operator 
satisfying appropriate conditions. This can be established for the self-dual Yang-Mills 
equations and it can be checked that the standard recursion operators for its reductions 
descend from it. See chapter 8 of Mason and Woodhouse (1996). 

The core of the theory of integrable systems comes down to the various different 
methods for representing general solutions to the equations. The twistor construction 
for the self-duality equations is the most general such method for those equations, 
giving a representation for the general local solution. Each symmetry reduction of 
the self-duality equations inherits a reduced twistor correspondence which will also 
yield the general local solution. Global methods, such as the ADHM construction 
or, in the context of reductions, the inverse scattering transform, are obtained by 
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globalizing the twistor construction. This often leads to useful simplifications of the 
twistor construction. For example, in the case of the inverse scattering transform, it 
is possible to obtain a natural gauge fixing of the Ward transform using the boundary 
conditions. This removes the gauge freedom which can be awkward when trying to 
get a good presentation of the solution space. These topics are discussed in chapters 
10 and 11 of Mason and Woodhouse. 

Conc lusions 

The tone of this piece has perhaps been somewhat territorial, suggesting that inte-
grability is perhaps a subfield of the theory of the self-duality equations and their 
associated twistor theory. However, this is far from the case. The theory underlying 
integrable systems is much too multifaceted for it to be limited in this way. In the 
long term, the most important pay-offs of these ideas will probably result from the 
feedback into twristor theory of ideas from the theory of integrable systems. There are a 
number of areas where twistor theory can be extended and improved using techniques 
from the theory of integrable systems. One example arises from the inverse scattering 
transform alluded to above. An appropriate twistor formulation leads to a new family 
of twistor correspondences that has application to an interesting family of questions 
arising from twistor theory in split signature. These applications were presented at 
the 1996 Srni Winter School. 

Another area where the theory of integrable systems goes beyond conventional 
twistor theory is in the theory of the KP equations. This has lead to a new extension 
of the standard twistor construction in which one, in effect, replaces the 9-operator 
with a Dirac operator, see Mason (1995) and chapter 12.6 of Mason and Woodhouse 
(1996). This should have application to many other interesting problems. 

However, the most important problem in twistor theory itself at the moment is 
that of finding a twistor construction for the full Einstein vacuum equations. These 
do have a linear system in the form of the Rarita-Schwinger equations and indeed 
Penrose has proposed that these might provide an appropriate vehicle for the definition 
of twistors in vacuum space-time, Penrose (1990), Mason and Penrose (1994). The 
Einstein vacuum equations are certainly not integrable, but nevertheless, the Rarita-
Schwinger equations do have a scattering theory. Perhaps it will be possible to set 
up an inverse scattering theory along the lines of that for integrable sytems (although 
perhaps with a nonlinear inverse scattering transform so that it no longer implies 
integrability of the equations). The connection with twistors that Penrose points out 
might well then amount to the needed twistor construction for vacuum space-times. 
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