
WSGP 15

Miroslav Doupovec; Jan Kurek
Liftings of covariant (0, 2)-tensor fields to the bundle of K-dimensional 1-velocities

In: Jan Slovák (ed.): Proceedings of the 15th Winter School "Geometry and Physics". Circolo
Matematico di Palermo, Palermo, 1996. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 43. pp. [111]--121.

Persistent URL: http://dml.cz/dmlcz/701580

Terms of use:
© Circolo Matematico di Palermo, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701580
http://project.dml.cz


RENDICONTIDEL CIRCOLO MATEMÄПCO DIPALERMO 
Serie II, Suppl. 43 (1996), pp, ИЫ21 

L I F T I N G S O F C O V A R I A N T ( 0 , 2 ) - T E N S O R F I E L D S T O 
T H E B U N D L E OF tf-DIMENSIONAL 1 - V E L O C I T I E S 

Miroslav Doupovec and Jan Kůrek 

A b s t r a c t . We introduce and study some liftings of (0,2)-tensor fields on a manifold 
M to the bundle Tjf M. Then we determine all first order natural R-linear operators 
transforming (0,2)-tensor fields to T^M. Finally we classify first order natural op
erators transforming symmetric (0,2)-tensor fields on M into (0,2)-tensor fields on 
TIM. 

1. INTRODUCTION 

The bundle T^M = Jo (R*, M) of all fc-dimensional 1-velocities plays an important 
role in differential geometry, especially in the analytical mechanics. In particular, for 
k = 1 we obtain the classical tangent bundle TM = T^M and the linear frame bundle 
FM = invJo(R m , M ) , m = dimM, is an open dense subset of T^M. 

We shall use the concept of a natural operator, which can be considered as a 
generalization of the concept of a geometrical construction, [6]. Using such a point of 
view, Kowalski and Sekizawa determined all first order natural operators transforming 
Riemannian metrics to the linear frame bundle F M , [7]. Further, Janyska has in [5] 
classified first order natural operators from Riemannian metrics into 2-forms on the 
tangent bundle TM. Moreover, the first author determined in [3] all first order natural 
operators from general (0,2)-tensor fields into (0,2)-tensor fields on TM. 

In this paper we first study the classical linear liftings of (0,2)-tensor fields to 
the bundle T^M, namely the vertical and the complete lifts. Then we prove that if 
k > 1, then there is no natural isomorphism between T\T*M and T*T^M. Further 
we introduce the antisymmetric lift and then some nonlinear liftings. Moreover, we 
determine all first order natural R-linear operators transforming (0,2)-tensor fields 
on M into (0,2)-tensor fields on T^M. Finally we classify first order natural operators 
transforming symmetric (0,2)-tensor fields on M into (0,2)-tensor fields on T^M. 

All manifolds and maps are assumed to be infinitely differentiable and all manifolds 
are paracompact. 

2. THE FUNDAMENTAL LIFTINGS 

Let M be an m-dimensional smooth manifold. We denote by PM • TM —> M the 
tangent bundle and by qM - T*M -» M the cotangent bundle of M. Let -KM :T%M = 
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Jo(R*,M) —• M be the bundle of fc-dimensional 1-velocities. It is well known that 
the linear frame bundle FM = invJo(R m ,M) is an open dense subset of T^M. The 
canonical coordinates (xl) on M induce the additional coordinates (yl = dxl) on TM, 
(pi) on T*M and (y'a, a = 1 , . . . , Jb) on T^M. The bundle T^M can be identified with 
the Whittney sum T^M = TM © • • • © TM of k copies of TM. Further, we have k 
canonical projections Pj>M : T^M —» TM, a = 1,... ,k, (x%,y\,... ,yl

k) i—» (x%,yl
a). 

Let / : M —> R be a function on M. The vertical lift fv of / to TkM is a function 
/ ^ : T^M —• R defined by fv = f o TTM- Further, we define the a-complete lift 

/ c ' « : Tl
kM -> R, a = l , . . . , f c by / ^ " ( J J T ) = ^ ^ ^ Obviously, / h-> / C ' a is a 

linear map of C°°(M) into G°°(TlM) satisfying ( / • g)c>a = / C ' a • gv + fv • gC'a for 
all / , g E C°°(M), a = l,...,k. Mikulski has recently proved that the (k +1) lifts fv, 
fc'1,... , / C ' f c generate all natural liftings of functions to the bundle TkM. By [9], all 
natural transformations C°°(M) •-> C°°(T£M) are of the form $(fv, f0*1,..., / C ' * ) , 
where # : R*+ 1 i-> R is an arbitrary smooth function. Finally, the complete lift of 
/ to T £ M is defined as the sum fc = Yla=i / C ' a ? [2]« It is interesting to point 
out that / c ' a = ( P r M ) * / c , where fc is the complete lift of / to TM defined by 
fc(y) = dfx(y), x = PM(V), in coordinates fc(y) = ^ r V -

Let X be a vector field on M . We define the a-vertical lift Xv,a, a = 1 , . . . , k 
of X to TkM by means of translations in the a-directions in the individual fibres of 
TkM. If u) is a 1-form on M, then we have k functions iau : TkM —• R, a = 1 , . . . , k 
defined by (iQu>)(u) = w(pj,M(u)). Then the a-vertical lift XV'a can be also defined 
by Xv'a(ipu) = 6%u(X), [8]. Finally, the complete lift Xc of X to TlM is defined 
as the flow prolongation of X, Xc = ^ | Q (Tk(exptX)), where exptX means the flow 
of X, [6], [11]. By [10] the a-vertical and the complete lifts of X can be also defined 
by means of their actions on liftings of functions. We have 

L e m m a 1. Let X and Y be arbitrary vector fields on M and let f be an arbitrary 
function on M. Then 

I. Xc(fc>a) = (Xf)c>a, a = l,...,k, 
Xc(fc) = (Xf)c, Xc(fv) = (Xf)v, 

II. Xv>a(fc>?) = Sa(Xf)v, a,f3 = l,...,k, 

Xv>a(fv) = 0, Xv>a(fc) = (Xf)v, a = l,...,k, 

III. [Xc,Yv>a] = [X,Y)V'a, [Xv>a,Yv>f>]=0, a,p = l,...,k, 

[XC,YC] =[X,Y}C. 

In coordinates, if X = ?&, then Xv>a = C^r, Xc=£i£T + g - y i g f r - Now 

we define the vertical and the complete lifts of (0,2)-tensor fields to TkM. We shall 

use the following 

L e m m a 2. IfG and H are (0,2)-tensor fields on TkM such that for all vector fields 
Xi, X2 on M we have G(XC,XC) = H(XC,XC), then G = H. 

Proof. It suffices to prove that if G(XC,XC) = 0 for all vector fields X\, X2 on M, 
then G = 0. Suppose that 

(1) G = Aijdx1 ® dxj + B^dx{ ® dyJ
a + C^dyl ® dxj + Dffdyi ® dy^. 
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K * i = £T>*2 = &T, then G(XC,XC) = Aij = 0. Further, let Xx = &, X2 = 

?•£?. Then G(X?,X?) = £? . | £ .y* , which implies B* = 0. Quite analogously we 

prove that Cg = 0 and D?f = 0. • 

Let G be an arbitrary (0,2)-tensor field on M. 

Definit ion 1. The vertical lift of G to T\M is a (0,2)-tensor field Gv on TjjAf 
defined by GV(XC,XC) = (G(XUX2))

V for all vector fields Xu X2 on M. 

Definit ion 2. The a-cora/>Ze*e lift of G to T^M is a (0,2)-tensor field Gc>a on T\M 
defined by Gc>a(X?,X?) = (G(Xi, .K2))C 'a , a = 1 , . . . , k for all vector fields Xu X2 

on M. The complete lift Gc of G to T\M is defined by GC(X1
C, X2

C) = (G(Xi, X 2 ) ) c 

for all vector fields X\, X2 on M. 

If G is a 2-form on M, then GK = n*MG is exactly the pull-back of G to T£M. 
Analogously, Gc>a = (PTM)*GC', where G c is the complete lift of G to TM, [3]. We 
have G c = ^ a = 1 Gc>a. In coordinates, if G = gijdx1 ® dzJ, then 

(2) GK = gijdx* ®dxj, 

(3) G c ' a = ^frVadx* ® cfxJ' + ^ i d x i ® dyi + ^ d y j , ® dz'". 

One proves easily 

L e m m a 3 . Let F and G be (0,2)-tensor fields on M. We have 

I. (aF + bG)v = aFv + bGv, (aF + bG)c = aFc + bGc for all a,b G R, 
(aF + bG)c>a = aFc>a + bGc>a for all a, b G R, a = 1 , . . . , k, 

II. (F ® G ) c ' a = F c ' a ®GV + FV ® G c ' a for all a = 1 , . . . , k, (F ® G ) c = 
FC®GV + FV® Gc, (F ® G)K = F v ® GK, 

III. If G is symmetric (or antisymmetric), then Gv, GC'a and Gc are symmetric 
(or antisymmetric) as well, a = 1 , . . . , k, 

IV. If G is a 2-form on M, then Gv, G c ' a and G c are 2-form.s on T\M and we 
have (dG)v = dGv, (dG)c>a = dGc>a, (dG)c = dGc, a = l,...,k, 

V. If G has rank r, then Gc,a and Gc have rank 2r and Gv has rank r, 
VI. If G is a Riemannian metric on M, then Gv, Gc>a and Gc are degenerated 

metrics on T\ M, 
VII. Gv(Xv>a,Yc) = 0, Gv(Xv>a,Yv>P) = 0 for all vector fields X, Y on M, 

a 3 = 1 k 
VIII. Gc>a(Xv>P,Yc) = Gc>a(Xc,Yv>P) = 8a(G(X,Y))v,Gc>a(Xv>P,Yv>~<) = 0 

for all vector fields X, Y on M, a, [), 7 = 1 , . . . , k, 
IX. Gc(Xv>a,Yc) = Gc(Xc,Yv>a) = (G(X,Y))v,Gc(Xv>a,Yv>P) = 0 for all 

vector fields X, Y on M, a, /3 = 1 , . . . , k. 

Denote by KM : TT\M —• T\TM the isomorphism defined by the exchange ho-
momorphism of Weil algebras of functors TT\ and T\T, [6]. This isomorphism can 
be also defined by KM (& | 0 (Jo*0) = io (& | 0 *0» w h e r e *(*>*) : R x R ^ M ' 
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6(s, t) = 6s(t) = 6t(s). The complete lift of a vector field X on M to TkM can be also 
described by Xc = /cM oTkX. Now we present a similar geometrical characterization 
of complete lifts of (0,2)-tensor fields to TkM. We first define natural transforma
tions slf : TlT*M -* T*T%M over the identity idTfciM of T^M, a = l,...,k. If 
X : M —• TM is a vector field and u; : M —> T*M is a 1-form, then the contrac
tion (w,X) : M —> R is a function on M. Then s M , a = l,...,k are defined by 
( s M o Tku,Xc) = (uj,X)c,a. Analogously, one can also define a natural transforma
tion sM : TlT*M -> T*T\M over id T i M by (sM o T ^ , X C ) = (u,X)c. Obviously, 
SM is the sum of all ,sM , a = 1 , . . . , k on the vector bundle T*TkM -+ TkM. If k = 1, 
then SM is exactly the isomorphism TT*M —» T*TM defined by Tulczyjev and Mod-
ugno and Stefani, cf. [6], We shall denote by (xx,pi, xa,pii0t) or (xx,ya,ridxx +sadya) 
the local coordinates on TkT*M or T*TkM, respectively. Then the equations of s M 

are ya = xx
a, rj = p l > a , sf = ££p; and the local coordinate expression of SM is yl

Q = xa, 
ri = E a = l Pi>, ^f = p t , a = 1 , . . . , fc. 

Remark 1. The well known isomorphism TT*M —• T*TM is a particular case of 
the isomorphism T?T*M - • T*T?M, where T^M = JJ^M) is the bundle of 1-
dimensional fc-velocities, [1]. On the other hand, if k > 1, then neither s M nor 
SM • TkT*M —> T*TkM are isomorphisms. Moreover, the following assertion enables 
us to clarify that if k > 1, then tf/iere w no natural isomorphism TkT*M —> T*TkM. 

Propos i t ion 1. All natural transformations ofTkT*M into T*TkM are of the form 

yia=Aax[+--- + Ak
ax

i
k, 

(4) sa=Ba
Pi, 

n = (A\Bl + • • • + A\Bk)pi9l + • • • + (AkB1 + •. • + AkBk)Pi)k + CPi, 

where A&, Ba and C are arbitrary smooth functions of the invariants Ip = pix1*, 

Proof. Denote by Gm the group of all invertible r-jets of Rm into Rm with source 
and target zero. By the general theory of natural operations in differential geome
try developed by Kolaf, Michor and Slovak in [6], it suffices to determine all Gm-
equivariant maps of the corresponding standard fibres, 

y« = ya(x^Pi^Pini^n = I , - - - , * ) , 

s? = sa(xt
/3,pi,pin',f3,j = l,...,k), 

ri = ri(xxp,pi,pin;p,<y= l,...,k). 

We shall denote by (aXj,axjk) the canonical coordinates in Gm and by tilde the coordi
nates of the inverse element. One evaluates easily the following transformation laws, 
which represent the action of Gm on the standard fibres 

K = <*>*£> Pi = a\Ph Pi}a = ^iPhot + a3ikalxtaPji 

Va = a)yJai *? = a - s a , fi ^^rj+a^aiy^sj. 
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Consider first ya. The equivariance on the kernel of the jet projection G m —> G m 

gives that ya are independent of p t > a . Then the tensor evaluation theorem from [6] 
yields the first equation of (4). Quite analogously we deduce the second equation of 
(4). Assume finally r t in the form r t = fc^pt./? + f t(£^,p t ,p t . /?). Then the equivariance 
reads k* = A^Ba (the sum through a) and r t have the tensorial transformation law. 
This completes the proof. • 

The natural transformation .5M corresponds to A' = £!•, Ba = 1, B& = 0 for p ^ a 
and C = 0. 

Each tensor field G = gijdx1 ® dx3 on M can be identified with the linear map 
GL : TM -* T*M, Pi = gijyJ, [3]. Let GL : TT^M -> T*T%M be the linear 
map over the identity i d T i M of T^M corresponding to the (0,2)-tensor field (1) on 

T^M. The coordinate expression of GL : (xl,ya,X
%,Ya) i-» (xt,yt

a,ridxt + sadya) is 

n = AijX> + BfjYl, sa = CfkX
k + D^Y*. Using the definitions of GL, GL, sa

M and 

5 M we deduce 

Propos i t ion 2. Let G be an arbitrary (0,2)-tensor field on M. Then 

I. G c ' a is the only (0,2)-tensor field G on T*1 M satisfying GL = sa
4oT^GLoKM-

II. Gc is the only (0,2)-tensor field G onT^M satisfying GL = SM°T\GL O KM> 

Each (0,2)-tensor field G on M defines k 1-forms ra on T\M, a = l,...,k, 
ra(u) = G( — ,pj,M(u)). In coordinates, ra = gijyadxx. In other words, ra = (GL o 
Pj'M)*u;, where u = pidx1 is the canonical Liouville 1-form on T*M. 

Definit ion 3 . The a-antisymmetric lift of a (0,2)-tensor field G on M to T^M is 
the 2-form GAa on T^M defined by G A ' a = dra. 

Obviously, GA'a = (GL O P J - M ) * ^ 1S ^ n e pull-back of the canonical symplectic form 
fi = du. In coordinates, 

(5) GA>" = ^y^dx*' A dx* - gijdx' A dy{. 

3 . CLASSIFICATION OF LINEAR NATURAL LIFTINGS T* ® T* ~> (T* ® T*)T% 

In this section we determine all first order linear natural operators transforming 
(0,2)-tensor fields on M to the bundle of fc-dimensional 1-velocities T^M. We first 
prove the following auxiliary assertion. 

L e m m a 4 . All Gm-equivariant smooth maps R m x • . . x R m xR m * ®R m * -> Rm* ® 

k 

Rm*, Eij = Eijiy^gij; a = 1,... ,k) are of the form 

Eij = ^1.^.7 + <Pi93i + <p369iky*gjsys6 + <p269ikyy9ajyi + ^l^kiy^gajyt + vtgkiy^gjsyl 

where (p{ = (pi(gijyiy^; a, p = 1,..., k). 

Proof. Introduce new variables ul,vl £ R m , ul = aju j ', vx = a^v* and consider 

the sum EijUlvJ. This is a Gm-invariant smooth function tp = V,(ya>flf*j»M,»vx;a = 
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1 , . . . , k). By the tensor evaluation theorem, [6], we have 

V> = v(9ijyayJp,9ijUlu3 ,gijv%v3 ,gijuxv3 ,gijvxu3, 

9ijy%au*],9i3u%y3a,9ijy%a^},9ijV%y3
a;o:,t3 = l , . . . , f c ) . 

Differentiating with respect to ux and putting ul = 0 we obtain EijV3 = fagijV3 + 

ip29jiv>}+'<l>l9ijy3
Y+*l>49jiyJ

r, where fa = fa(gijyiyj3,gijvtv^gijviy3
a,gijy

t
av

3). Finally, 

differentiating with respect to v* and setting v% = 0 we get the assertion. • 

As a direct consequence we have 

L e m m a 5. All Gl
m-equivariant smooth maps R m x • • • x Rm xR m * 0 Rm* -> Rm* ® 

k 
Rm*, Eij = Eij(ya,gij\ a = 1 , . . . , k), where gij are symmetric in i and j , are of the 

form Eij = (fxgij + V?2*0i*y*0>ay£, where ip{ = tpiigijy^yfra,/3 = 1,... ,k). 

Quite analogously to Lemma 4 one can prove 

L e m m a 6. All Gm-equivariant smooth maps Rm x • • • x Rm xR m * ® Rm* x Rm* ® 

k 

Rm* ® Rm* -> Rm* ® Rm*, Eij = Eij(ya,gij, gijik; a = 1 , . . . , fc), which are linear in 
gij and gijjk, are of the form Eij = <Pigij + V29ji + Va9ij,kya + Va9ji*ya + Va9kijya + 
<P° 9kjfi9a + Vl9ik,jyka + V*9jk,iyai H>i ^ ^ . 

Let Gv or GC'Q or GA,a be the vertical or a-complete or a-antisymmetric lifts of a 
(0,2)-tensor field G on M to the bundle T^M defined in (2), (3) and (5), respectively. 
In what follows we shall denote by G' the (0,2)-tensor field on M given by (G,X ® 
Y) = (G', Y ® X) for all vector fields X and Y on M, in coordinates 

(6) G' = gjidx1 ® dx3. 

Now we deduce 

P r o p o s i t i o n 3 . All first order natural R-linear operators T* ® T* -> (T* ® T*)T£ 
transforming (0,2)-tensor fieids on M into (0,2)-tensor fieids on T£ M are of the form 

(7) G»A1G
V + A2(G')V + YJ

A%GC'Q+ 
a = l 

k k k 

E A%(G'fa + E A°GA,a + E ** (G')A'Q, 
a= l a= l a= l 

where all A's are arbitrary real numbers. 

Proof. Each (0,2)-tensor field on T^M is of the form (1). By [6] we have to determine 
all Gm-equivariant maps J](T* ® T*)Rm ® T^R"1 -* (T* ® T*)T£Rm, in local coor
dinates (gij,gij,k,yXo) *~* (Aij,B?jyCij^Dtf)^ which are linear in g{j and gijfk. Using 
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standard evaluations we determine the following transformation formulas 

9ij =aiaj9ki, 
77 ~m~n~P r, I (~m~n I ~m~n \„ 

9ij,k ~ai ajak9mn,P + (aikaj + at ajk)amn, 
yxa = a)yi> 

. x "T.. ~m~n A j ^ ~ m ~ n T7r riP _i ~m~nT;r r*<* i ~m~n T7rTr3 n**/? 
(8) A 0 ~ a . a i A™» + a i arjVpBmn + ariaj yaCmn + aria3Jyay^Dm

p
n, 

~~f5P ~m~n D/? , ~m~n—r na3 
Bij = a, aj Bmn + a^aj yaDm

p
n, 

a ~m~nr*ot i~m~n —r r\a3 

{j - at a, Cmn + at arjy^Dm
p
n, -riQP ~m~n na/* D = a t a, Dm

p
n. 

Consider first Daf(yx
a,#,j, #,,,*;a = l,...,k). By Lemma 6, 

i # = <p?9ii + vf9ji + ̂ %.;,*y* + vl^ga^ 
+ V5fiy9kuvk

7 + tf%y,.-yj + ^ % , * , ; y * + rf%i*,iy*. 

Then the equivariance on the kernel of the jet projection Gm ^+ Gm yields 

Dij = d\ 9ij + d2 9ji + dt 7(0.j,* - 9ji,k + 9kij - 9kj,i + 9jk,i - £ifc,;)y*-

Moreover, we shall assume that Caj, Bfj and Aij are of the form analogous to that of 
(9). Using equivariance on the kernel of the jet projection Gm —• Gm and then the 
full equivariance we obtain 

£.7 = 0, ?f = I 

Cg. = (Aa + Aa)gij + (Aa + Aa)9ji, 

B* = (Aa - Aa)9ij + (Aa - Aa)9ji, 

Atj = Aigij + A2Qji + Aa
gijikya + Aa

gjitkya 

+ Aa(gjkti - 9ikj)ya + Aa(gkj,i - y*.\i)y£, 

which is nothing else but the coordinate form of (7). • 

4. F I R S T ORDER NATURAL OPERATORS T* © T* ~* (T* ® T*)T£ 

Notice that all the liftings of a (0 ,2)- tensor field to the bundle TkM defined up till 
now are linear. Now we shall define some nonlinear liftings. Denote by fap* = gijyl

ay^ 
the function on TkM given by the full contraction and let Ta be the 1-forms defined 
in the second section. We can define the following (0,2)-tensor fields on TkM 

(9) Ta ® rfi, Ta ® dp\ dp? ® r 7 , dfafi ® dP8. 

The aim of this section is to prove 
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Proposition 4. All first order natural operators T*QT* —> (T*®T*)Tj^ transforming 
symmetric (0,2)- tensor fields on M into (0,2)-tensor fields on T^M are of the form 

k k k 

G»^AaGc>a + Y^AaGA>a + A3G
v + J^ Afra0T^+ 

a = l a = l a , /?=l 

k k k 

^2 Afy6dfaP®dp6+ £ Aa^Ta®df^+ J2 AfJdfafi®r^ 
a,j3,7,6=1 a,/?,7=1 a,/?,7=1 

where all A1 s are arbitrary-smooth functions of the invariants Iap = gijyay
3Q, OL,(3 = 

l , . . . , f c . 

Proof It suffices to determine all G^-equi variant maps J$(T* © T*)Rm © T^Rm -> 

(T* 0 T*)T*Rm of the form {gihgij,k,ya) *-> (AihB^C^Da[). Consider first 
D?f(y%ai9iji9ij,k] a = 1 , . . . , *)• By [7], if G is symmetric, then 

, x fdDaf dDaf\ 
(10) gap ^ - + j r - H - = 0. 

yogag,r Ogar,q) 

Furthermore, if we suppose G to be regular, then we can contract (10) with the inverse 
matrix gpk. We get 

dDaf dDaf 
— + — = 0. 

dgaq,r #ga r , g 

Using symmetry of G and the cyclic permutation in the indices (a, q,r) we prove 
analogously to [7] that 

dDa? 
(11) ^ - = 0-

OgPq,r 

Regular (0,2)-tensor fields form an open dense subset among all (0,2)-tensor fields. 
We have proved that (11) holds on the open dense subset, so that (11) holds every
where. Hence Da? are independent of gijfk- By Lemma 5, 

r\otd ad . a3y6 k 3 
Dij = <Pi 9ij + <rV giky1gj3y6-

Moreover, we assume that Caj are of the form 

(12) Cfi = Bf9ii,ky
k + Bfgkiiiy

k + Bfgki,iV
k + CfS<gim,ny'£yngip,qy

p
syl+ 

CfStgim,nyJyZgpq,iy
pyl + Cfs'gmn,iyfyngip,qy

pyl+ 

Cf^gmnsyJy^M + Dfsgiky
kgip,qy

pyl+ 

DfSgikyl9pq,jy
pyq

s + DfSgiky
kgip,qytiyl + 

Dfsgikyfi9Pq,iy
pys + <?,"(!/„, 9ij, gij,k\ a = \,...,k) 
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with undetermined coefficients 2?i, 2?2, 2?3, C i , . . . ,C4, .Di, . . . ,234. Using equivan-
ance on the kernel of the jet projection Gm —• Gm and then the full equivariance we 

get Cg = lvf(gij*+gkij-gkj,i)ykp+yfy6gi^ 
Using the same procedure for B?j and for Aij we complete the proof. • 

Remark 2. Kowalski and Sekizawa have in [7] determined all first order natural op
erators transforming Riemannian metrics to the frame bundle FM. Their construc
tion essentially employs the regularity of a Riemannian metric and the corresponding 
Levi-Civita connection which can be canonically associated to each regular symmetric 
(0,2)-tensor field. On the other hand, in the case of a general symmetric (0,2)-tensor 
field (not necessarily regular) we have no canonical connection at our disposal. Hence 
the result of Kowalski and Sekizawa is not a particular case of Proposition 4. On the 
contrary, owing to the regularity of a metric, the set of natural operators of Kowalski 
and Sekizawa is even wider than the set of natural operators from our assertion. 

Remark 3. Each (0,2)-tensor field G = gijdx1 ® dx* on M defines a 2-form to = 
(gij ~ gji)dx% ® dx* on M, so that the pull-back R = 7T*^(du) is a 3-form on T^M, 
R = Rijkdx1 ® dx> ® dxk. If G is a general (0,2)-tensor field, then we have further 
(3) invariants IQpy = Rijky%

ay
3py*, <*,/?, 7 = l , . . . , f c . Notice that if G is symmetric, 

then all 2"a/?7 vanish (cf. Proposition 4). 

5. CORRECTION 

The first author should like to make an apology for an error in the proof of Theorem 
in [3]. This section is devoted to the correction of this mistake. Let G be an arbitrary 
(0,2)-tensor field on M and G' be given by (6). Let /3 = gijy*dxx be the 1-form 
on TM defined by (/3,X) = (G,-,X) for all vector fields X on M, cf. [3], p . 217. 
Analogously, we shall denote by /?' the 1-form on TM defined by (/3',X) = (G, Xy —), 
/?' = gijyxdxK Finally, let / : TM —> R be a function defined by the contraction, 
/ — gijyly*- Then the exterior differential df is further 1-form on TM. Evaluating 
tensor products of 1-forms /?, /?' and df, we obtain 9 nonlinear liftings, which were 
not included in Theorem in [3]. The correct form of Theorem from [3], p . 222 is the 
following 

T h e o r e m , For m = 3, all first order natural operators T* ® T* -> (T* ® T*)T 
transforming (0,2)-tensor fields on M into (0,2)-tensor fields on TM are of the form 

(13) G .-> K^G'f + K2G
C + KZ(G')V + K±GV + K5(G')A + K6G

A 

+ K7f3®0 + K*fi ®p' + K9/3 ® ff + K10f3' ®/3 + Klxp ® df 

+ K12p' ®df + Klzdf ®P + Kudf ® ff + K15df ® df 

where Ki = Ki(gijyxy>) are arbitrary smooth functions of the invariant 2i and Gc, 
Gv and GA denote the canonical liftings. 

Correction of the proof On the right hand side of Si in (8) in [3] the following term 

+ (al9jnXjyn+a2gmjy
mXj 

+ <*3(9mnjymynXj + gmjy
mYj + gjmymY^))(gsiy

9 + gisy
9) 
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is missing and analogously on the right hand side of r,- in (8) in [3] we have to add 

+ (aigjnX
jyn + a29mjy

mXj 

+ a3(9mn,jy
mynXj + gmjy

mYj + gjmymYj))gpqyiy
pyq 

+ (PigjnXiyn + p2gmjy
mXj 

+ fo(9mnjymynXj + gmjy
mYJ + gjmymYj))gsiy

s 

+ (^gjnX
jyn + l2gmjy

mXj 

+ 7z(9mnjymynXj + gmjy
mYj + gjmymYj))gisy

9. 

This corresponds to (13), where K-j = 71, K$ = f32, Kg = 72, K\Q = /?i, K\\ = 73, 
-f-T2 = /?3, I^i3 = a i , K14 = a2 and Ki5 = a 3 . D 

Then the correct form of Corollary 1 and Corollary 2 in [3], p . 223 is: 

Corollary 1. For m _ 3, aJJ first order natural operators transforming symmetric 
or antisymmetric (0,2)-tensor fields on M into (0,2)-tensor fields on TM are of the 
form 

G i-> KXGC + K2G
V + K3G

A + K±p®p + K5(3 ®df + K6df ® /J + K7df ® df 

where Ki = Ki(I\) are arbitrary smooth functions of the invariant I\. 

Corollary 2 . For m ^ 3, aJJ first order natural R-linear operators T* ® T* ^ 
(T*®T*)T are of the form 

G » KxiG'f + K2G
C + K3(G')V + K4G

V + K5(G')A + K6G
A, 

where Ki are arbitrary real numbers. 
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