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BRS-Transformations in a finite dimensional setting* 

Margarita Kraus 

Abstract 

In order to get a mathematical understanding of the BRS-transformation and 
the Slavnov-Taylor identities, we will treat them in a finite dimensional setting. 
We will show that in this setting the BRS-transformation is a vector field on a 
certain supermanifold. The connection to the BRS-complex will be established. 
Finally we will treat the generating functional and the Slavnov-Taylor identity 
in this setting. 

1 Introduction 

In classical gauge theories one starts with a gauge invariant action S[$] = Jd4a;L[$], 
where $ denotes the fields and L[$] the Lagrangian, which is integrated over the 
Minkowski space IR1,3. For example the Lagrangian of QCD is given by 

L[A, % *] = *(iy.D„ - m)* - \F^FT, 

where A denotes the gauge potential, V the Dirac spinor and # its conjugate. The 
covariant derivative D^ is given by DM = dn + igA*ta and the field strength tensor Fjf 
by 

where L^ are the structure constants of the Lie algebra g of the gauge group G given 
by a basis (*i,..., t„) of 0. 

The infinitesimal form of the gauge transformation is 

5,9(x) = -itjr(x)*(x) 

6eA;(x) = - W i - " ^ ^ ) - / ^ ^ ^ ) ) , (1) 

which has a mathematical interpretation as the fundamental vector field given by the 
action of the gauge transformation group Q = O°°(1R1,3, G) on the space C of gauge 
fields and 6 of Dirac fields [15, p. 25]. 

*The paper is in final form and no version of it will be submitted elsewhere. 
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The quantization of such a theory by standard methods is not possible. One has 
to modify the theory to make it accessible to these methods. For that purpose new 
fields - the anticommuting ghost and antighost fields C and C and the auxiliary field 
B - are introduced. A gauge fixing map T, e.g. the Lorentz gauge T{A) = dM^, is 
chosen and the gauge invariant action is replaced by the effective action with effective 
Lagrangian (cf. e.g. [18, (2.3.179)]): 

Leff[,4, % *, B, C, C\ = L[A, *, * ] + BaTa{A) + ̂ BaBa - CbM^{A)Ca

y (2) 

with the Fadeev-Popov operator Mf{A)> which in the Lorentz gauge is given by 

MAA)(x,y)ab = -V^S* - fabcA;)6i(x - y). 

L e f f is no longer gauge invariant, but in 1974 C. Becchi, A. Rouet and R. Stora 
[2], [3] found a new symmetry of it: the invariance under BRS-transformation, which 
has important consequences. This transformation usually is given by its action on the 
fields (cf. e.g. [18, (2.3.180)], [1, (2.11)]): 

(3) 

On functional in the fields it acts as a derivation, which is given in [4, (26)] by 

sS[A,CA = fAsA + %sC + %sC (4) 

and fulfils [1, (2.12)] 
s{XY) = {sX)Y + {-l)WX{sY), 

where |X| = 0 for bosonic and |X| = -1 for fermionic fields X. 
On gauge fields and Dirac fields the BRS-transformation acts as an infinitesimal 

gauge transformation (1) with 0 replaced by the anticommuting ghost field C. 
But while the mathematical meaning of the infinitesimal gauge transformation as 

an infinitesimal action is clear, the mathematical meaning of the formulas (3) is not 
obvious, it is not an infinitesimal action in the ordinary sense. 

There are several mathematical interpretations of these transformations in the .lit
erature. Eg. [4], [6],[20] treat the BRS-transformation on A and C, [7], [11], [23] the 
BRS-transformation on A, C and C and [17] the BRS-transformation of Yang-Mills 
theory as a dynamical system. 

If one would try to assume C G C°°(lR1,3,g) =: LQ, then sC = 0 because of the 
antisymmetry of the structure constants. Therefore, in order to give (3) a mathematical 

sAа

џ = --g{DџCf 

sФ = - iť«o в Ф 

sC = — fаbcC C 

sČа = ва 

sBа = 0 



BRS-TRANSFORMATIONS IN A FINITE DIMENSIONAL SETTING 109 

meaning, the first step is to give an interpretation of the anticommutativity of the fields 
C and C. The attempt to model C as Ca G A^C^O-t1'3)) would yield Ca(x) ACb(x) = 
0, so this is not the right interpretation either. 

But if one interprets C as the identity on LQ, then it is possible to read sC = -\[Cf\ 
C] e A\t2(LQiLQ)i where Altfc(V,JV) denotes the space of the /..-linear alternating 
maps V x . . . x V ->> W. In the same way we will interpret the other fields as identities. 

For the sake of simplicity we will not include the Dirac spinors in our discussion 
but just consider a finite dimensional version of Yang-Mills theory. We will see that 
supergeometry is the right tool to treat theories with anticommuting fields. The BRS-
transformation will then appear as a vector field on a supermanifold and its relation 
to the BRS-complex becomes clear. In a last section we will treat a consequence of the 
BRS-transformation, the first Slavnov-Taylor identity. 

2 The BRS-Transformation 

We introduce our finite dimensional setting of Yang-Mills theory by choosing finite 
dimensional versions of "physicaT data as follows. 

"physics": "finite dimensional setting": 
group Q of gauge transformations finite dimensional Lie group G 
space LQ of infinitesimal gauge 
tгansformations 

Lie algebra g with scalar product (•, •) 

space C of gauge fields finite dimensional vector space V with 
(non-linear) G-action Ф : G x V -> V 

infinitesimal gauge transformation 
given by 

MJtø = -\DţҢx) 

infinitesimal action 
pЄC°°(V,Hom(g,V)), 

given by the G-action Ф as 
p(v):=(dФ(-,v))(l) 

gauge invariant action 5 ö-invariant function l Є C°°(V) 
gauge fixing map T /€Hom(V,ð) 
Fadeev-Popov operatoг M? m / :=/op€C~(V,End(ß)) . 

As we have have argued already in the introduction we will interpret the fields as 
identities. Thus we replace them by coordinate maps: 

"physics": "finite dimensional setting": 
gauge field A 
auxiliary field B 
ghost field C 
antighost field Č 

a:=idєC°°(ҚV) 
6:=idєC°°(øo,Øo) 
c — idєAltҶg,^) 
č:=idє AltҶĝ g) 

where g =: g0 =: g. 
Therefore, as a finite dimensional model of the effective action SeQ of Yang-Mills 

theory, given by the effective Lagrangian (2): 
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" physics": 
LeS[A, B, C, Č] = L[A] + BaTa{A) + %BaBa - ČbM^(A)Ca, 

we will use the welldefined mathematical object 

"finite dimensional setting": 
4 f f := 1 + (b, f) + i(6,6) - (č A m/ o c) € CX(V © flo) ® A(fl 0 g)». 

Before we proceed, let us recall some results of the theory of supermanifolds, which 
is a well elaborated theory (cf. eg. [12], [16], [8]). By a superspace we mean a pair 
(V, C°°(V) 0 AW*) with vector spaces V and W. We will consider *?eff as superfunction 
on the superspace (V 0 0O, C°°(V 0 0O) <g> A(0 0 g)*). 

For vector fields, which means in our special case nothing else than graded deriva
tions of C°°(V 0 0O) <g> A(0 0 g)*, we use the following result (cf. (cf. [12, p. 197])). 

Theorem 1 Let V and W be vector spaces of dimensions m and n. Then the vector 
space of graded derivations Der(t7°°(V) 0 AW*) as a C°°(V) <g> AW*-modul is freely 
generated by the even partial derivatives f̂--,..., j£- and the odd partial derivatives 
^ , . . . , jj^, where (xu..., xm) are coordinates for V and (ft,. . . , fn) is a basis ofW*. 
The action of £ on superfunctions is given by 

^(Sff1 •••«•) = ( ^ f 1 - e , form € Z2 

and of ^ - by 

d k 

We now define the even and odd derivatives of superfunctions / 6 C°°(V) <g> AW* by 
m Q 

dvf := £ £-fdxi e C°°(V) 0 AW* 0 V* 

d ^ / := £ £ / ® 6 € C°°(V) 0 AW* 0 W* 

and in a similar way for subspaces of V and W. 
Then for our superspace (V 0 0O, C°°(V 0 0O) 0 A(0 0 0)*) we get as a consequence 

of Theorem 1 

Corollary 1 LetS be a Derivation ofC°°(V®g0)®A(g®g)* and f € O°°(V00o)<g> 
A(0 0 0)*. Then 

Sf = 5(a) - dvf + S(b) • dgJ + 5(c) • d,/ + 5(c) • d,/, 

where we have abbreviated (S <g> id)(x) =: S(x) for x = ayb,c,c and " • " denotes 
multiplication in C°°(V <g> 0O) <g> A(0 0 0)* followed by evaluation on V <g> V*, resp. 
0 0 0*. 
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We replace the functional derivatives in (4) in the finite dimensional setting by even 
and odd derivatives 

A. JL JL 
øл> ÔC> ÕC dVì dQì dg 

Now it is obvious that in the finite dimensional setting the BRS-transformation (3) has 
to be replaced by the vector field on the superspace (V©g0, C°°(V©g0) 0 A(g©g)*), 
which is defined on the coordinate maps by the righthand side in the following table: 

BRS-transformation: BRS-vector field: 
sAa

џ = -ţ(DџC)a 

sBa = 0 
| sc* = -lf<>i*CьCc 

sCa = Ba 

Da = p(a) o c 
D6 = 0 
Dc=-\[cЛc] 
Dč = Ь 

We will use the remainder of this section to illuminate the mathematical meaning 
of this special vector field D by explaining its relation to the BRS-complex, which has 
been worked out in another context by several authors (e.g. [10], [13], [21], [9], for a 
survey cf. [22], [24]). 

Let d be the Koszul differential on C7°°(V © g0) 0 Ag* given by 

9:C o o (V©g o )0A- i g* -> Ooo(V©go)0 A-(i+1>g*, 

( / 0 a) .-•> ((vyx)t-> f(vyx)®(x-Ja)), 

where (v, x) € V © g0. For the cohomology of this complex there is the following result 
(cf. [9, p. 241]) 

H°(C°°(V © g0) 0 Ag*, d) = C7°°(V) 

and 
.f7

i(c7oo(V©go)0Ag*,9)=O for i^Q. 

Next we consider the Lie algebra differential SPyg = Sp + id0<5g with coefficients in 
C°°(V®Q0)® Ag*, where Sp : C

oo(V©go)0Ag*(S)A,g* -^ Coo(V©go)0Ag*<8)Ai+1g* 
is given by 

Sp(f 0 a 0 /?)(«Q, vu..., Vi) = X)(-l)fcvjkP/ 0 a 0 P(v0l..., vkl..., vf), 
Jfc=0 

with Vk G g, and vkp denoting the fundamental vector field given by the infinitesimal 
action p, and Sg by 

(SgP)(v0,..., v,-) = ^ - l ) * - ^ ^ * , vi], v0,..., vk,.-, vu -Vi)-
k<l 

Then (C°°(V © g0) 0 Ag* 0 Ag*, d 0 id, SPig) is a double complex, which is called the 
BRS-double complex. By [9, p. 239] we have 
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Theorem 2 If (K, V) denotes the complex corresponding to the BRS-double complex, 
with the BRS-operatorV = d®id+6PS, then H°(IC,V) = C°°(V)G, where C°°(V)G 

denotes the G-invariant functions on V . 

This BRS-operator V is a graded derivation on C°°(V © g0) ® A(Q © g)*, therefore a 
vector field. 

Theorem 3 The BRS-operator is the BRS-vector field, V = D. 

Proof By Theorem 1 V is determined by its action on the coordinate maps. By a 
straightforward calculation we get Vx = Dx for x = a, b, c, c, which shows V = D. D 

The vector space V is a model for the space C of gauge fields A*, hence H°(JC, V) 
models the space of gauge invariant functionals on C. Especially for the gauge invariant 
action this yields the following 

Theorem 4 Fori G /C° and£eg 6 K? we have [l]v = [teg]v 

Proof It is VI = 5p$e = 0, because of the G-invariance of I, and a straightforward 
calculation shows 

3 The Slavnov-Taylor Identities 

In the physical literature the BRS-tnjisformations are used to obtain the first Slavnov-
Taylor identity by manipulating the mathematically ill-defined path integral (cf. [5, 
p. 152]). In the finite dimensional setting of the last section we get a corresponding 
identity by strictly mathematical methods. 

The Slavnov-Taylor identity is an identity for the generating functional using the 
effective action Seg without auxiliary field given by 

<{physics": 
LeS[A,CyČ] = L[A) - \?{Af?{A)a -ČbM>?(A)Ca, 

which is modelled by 

"finite dimensional setting": 

U = t - \{f • f) - (čA m, o c) 6 C°°(V) ® A(g © fl)\ 

This action Seff is invariant under a slightly modified BRS-transformation s modelled 
by a vector field D =: <5p>g -f d as shown in the following table: 

"physics": "finite dimensional setting": 

šA = sAy sC = sC 

sCa = -T(A)a 

Ďa := Da, Ďc := Dc 

Dð:=-/ 
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To model the generating functional we replace the path integral by an integral over 
finite dimensional spaces. 

Recall that the fermionic integral of superfunctions g e C7°°(V)® A(0®§)* is defined 

by F 

f (E.WPS1 • • • « " m := 5(W) 
J w 

(cf. [19]), where (&,..., fn) is a basis of 0*, with & interpreted as the element & ® 1 
in A0* ® Ag* and & := 1 ® &. This integral has the same properties as the fermionic 
integral defined in the physical literature, cf. [19, 10.5]. 

Using this integration we model the generating functional 

T{J,u>tu>} = l / d t A C ^ W W M ^ ^ ^ 

where J, u and Q are sources of the fields, by the Fourier transform of the superfunction 
e*eff, that is by 

t:=fdx fF ded^ f f + i ( ^ ' a > + ^ A c > + ^ A g » 6 C7°°(V*) ® A(0 0 g) ® C, 

where we have replaced the sources of the fields by coordinate maps in C°°(V*) ® 
A(0 0 g ) : 

J, Ш, Ш j a := idy, j c := id0., j e : = idg* 

(For the fermionic Fourier transform cf. [19, p. 229].) 

The derivation of the first Slavnov-Taylor identity in the physical literature starts 
from the assumption that the 'measure in the path integral' is BRS-invariant. In the 
finite dimensional setting we have the following corresponding theorem: 

Theorem 5 Let G be a unimodular Lie group, V a finite dimensional vector space 
with measure dx and $ an action of G on V, such that the measure dx is G-invariant. 
Let (Ti,..., Tn) be a basis in 0. If the fundamental vector fields (Ti)$ are polynomial 
and g € S(V) ® A(0 © §)*, where S(V) denotes the rapidly decreasing functions on V 
in the generalized sense (cf [14, P- 117] ) then 

Jv(J
FVgdtdŠ)dx = 0. 

Proof Obviously we have fF(dg)d£d£ = 0, where d denotes the vector field defined by 
Be = - / . But 0 is unimodular, so S$ct = 0 for a G An-10*, therefore /F(id ®Sg)gd£df = 
0. Finally fv fF Spgd£d£dx = 0 is a consequence of the invariance of the measure on 
V. For details cf. [14, p. 203]. ---

The first Slavnov-Taylor identity is given by (cf. [5, (2.3.136'), (2.3.139')]) 
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"physics": 

^mf{J)=/^w^sfe^w*'") 
with 

T-{J ,x,y):= — _-L 
Ìбӣ>c{x) SWa{y) 

L=Û=OT{JУU ,(*)}. 

In the finite dimensional setting as a consequence of Theorem 5 and some properties 
of the Fourier transform we get 

Theorem 6 Let G be a unimodular Lie group, V a finite dimensional vector space 
with measure dx and $ an action of G in V, such that the infinitesimal action p is 
polynomial and dx is G-invariant. If e1** € S(V) ® A(g 0 g)*, then 

-/(T^T-)* = Oo Ap(gj-)tgS) with tis := (dydg*t)~ 

and denoting the projection C°°(V*) ® A(g 0 g) --> C°°(V*). In coordinates this is 

"finite dimensional setting11: 

with 
Wlk)ł = Ш&)Wt9*)'' 

f-Дr-Ä-í 

^щjiдjf1 
(Чд)101:- (iдäiдjft*) -

Proof cf. [14, p. 216]. 

The last formula corresponds in the finite dimensional setting exactly to the first 
Slavnov-Taylor identity. 
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