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ON ADMISSIBLE GROUPS OF DIFFEOMORPHISMS 

TOMASZ RYBICKI 

ABSTRACT. In a number of papers the phenomenon of determining a smooth geometric 
structure on a manifold by the group of its automorphisms have been investigated. This 
seems to be a modern analogue of basic ideas of the Erlangen Program. We call such 
diffeomorphism groups admissible and try to describe them by imposing some axioms. 
Several examples are included. 

1. INTRODUCTION 

The phenomenon of determining a geometric structure on a manifold by the group 
of its automorphisms is a modern analogue of some basic ideas of the Erlangen Pro­
gram of F.Klein [11]. This fact, which seems to be a deep feature of the geometry 
of manifolds, has been extensively commented in F.Takens1 paper [18]. In this note 
diffeomorphisms groups fulfilling this phenomenon will be called admissible. 

One of the first remarkable contributions to the Erlangen Program in terms of 
the modern geometry constitutes the paper by J.V.Whittaker [19]. He proved that 
under mild assumptions a topological manifold is completely defined by the group of 
its homeomorphisms. The techniques of this paper can be viewed as a basic tool in 
further attempts but now complicated infinite patching methods from [19] are useless 
since the fragmentation property has been proven. More recently R.P.Filipkiewicz 
[8] established that the group Diffr(M) of all Cr diffeomorphisms of a manifold 
M, 1 < r < co, determines uniquely the topological and smooth structure of M. 
Next A.Banyaga in [3] showed analogous theorems for the group of automorphisms 
of a unimodular as well as a symplectic structure. A more general result has been 
proved in [14] by using a simplified pattern of the proof. This pattern has occured 
to be fruitful (cf.[15, 16]) as it gets rid the proof of theorems on the simplicity and 
perfectness of diffeomorphism groups (see for instance [7] and references in [14]), the 
theorems which are difficult and not known in important cases. 

Our aim here is to describe a possibly large class of diffeomorphism groups fulfilling 
the above mentioned phenomenon. This is accomplished by imposing some axioms 
on these groups and by formulating a main theorem in section 2. (The term "axiom" 
is far-fetched here but it follows [7].) In the last section we prove the main theorem. 
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All considerations are valid in the C°° (or C r, 0 < r < oo) category, and are no 
longer true in the real analytic case. 

2. ADMISSIBLE GROUPS OF DIFFEOMORPHISMS 

Let M be a Cr manifold. Any subgroup G = G(M) of Diffr (M) is said to be a 
group of Cr-diffeomorphisms of M. By G(M)C we denote the subgroup of compactly 
supported elements of G(M). If G(M) is locally contractible (this is satisfied by the 
"classical" groups of diffeomorphisms, i.e. the groups of symplectic diffeomorphisms, 
volume element preserving diffeomorphisms and contact diffeomorphisms, as well as 
the group of leaf preserving diffeomorphisms) then G(M)o, the identity component of 
G(M)C in the Cr compact-open topology, consists of all / G G(M)C such that there 
are a compact K C M and an isotopy F = {ft}tei in G(M) connecting / = / i with 
the identity with each ft stabilizing outside K. 

Next for U open denote by G(U)C the group of diffeomorphisms of G compactly 
supported in H, and by G(U)Q its identity component. 

We start our axiomatization with the fragmentation property. 
Axiom 1. For any U = {Uj} a finite open cover of supp(f), where / G Go, we 

have / = / i . . . fs where fi G G(Uj^))o for i = 1,.. . , s. 
It is well known that Diffr(M) satisfies Axiom 1 (cf. [13], for r = 0 [6]). The same 

holds for contact diffeomorphisms. Also for the kernel of the flux homomorphism of 
C7(M, a), where a is a volume element or a symplectic form, we get this property as 
well (cf.[4]). 

The following is clue in our pattern of the proof. 
Axiom 2. For any x e M and a sufficiently small open ball U with the center at 

x there exists / eG0 with Fix(f) = (M - U) U {x}. In addition, for any x G CJ, U 
open, there is / € G(U)0 such that f(x) 7- x. 

Here Fix(f) = {xG M\f(x) = x}. Again, this axiom is satisfied by "classical" 
groups of diffeomorphisms (cf.[3], [14]). 

Definition. Let dim(M) > 1. Then G(M) satisfies T(n) property if for any two 
n-tuples of n distinct points x i , . . . , xn) 2/1,... , yn G M there is / G G(M) such that 
f(xi) = 2/i-

If dim(M) = 1 then M is diffeomorphic either to the real line or to the circle. 
Then one can fixed an order either on M in the first case, or on M — {x} with some 
fixed x in the second. In this case G(M) will be said to have T(n) property if for any 
two ordered n-tuples X\ < . . . < xn and y\ < . . . < yn there is / G G(M) such that 
f(xi) = yi in the first case, and if for any two ordered (n — l)-tuples x\ < ... < xn_i 
and 2/1 < . . . < 2ln_i there is / G G(M) such that f(x) = x and f(xi) = yi in the 
second case. 

It is well known that Diffr(M) and the "classical" groups of diffeomorphisms as 
well as their identity components have this property (see, e.g., [12]). 

Axiom 3. G(M)0 acts T(3) on M. 
The theorems of Whittaker type are "integral" counterparts of Pursell-Shanks type 

theorems. A theorem of Pursell-Shanks states that the Lie algebra of vector fields 
of a manifold M determines completely the smooth structure of M itself. Several 
generalizations followed, eg.[l],[10]. Our next axiom will appeal to these theorems 
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(cf.[2]). The reason is that Lie algebras of vector fields are more manageable than 
diffeomorphism groups. 

Definition. A Lie algebra of compactly supported infinitesimal automorphisms 
of a geometric structure (M,a) satisfies (PS) property if it determines uniquely 
(M,a). Moreover, if X(M\,a\),X(M2,a2) are isomorphic by $ then the unique 
diffeomorphism <j>: Mi -> M2 fulfils $ = (j>* and exchanges the structures in question. 

Axiom 4. There is X, a Lie algebra of vector fields satisfying (PS) property, such 
that all elements of the one parameter transformation group of any element of X 
belong to G. 

The above axioms are sufficient for the transitive case [14]. Now we consider 
the nontransitive case. It is easily seen that the identity component of a locally 
contractible group of diffeomorphisms constitutes a set of arrows (cf.[17]) so that it 
defines uniquely a generalized foliation, say T. We impose further axioms connected 
with the nontransitivity. 

Axiom 3'. G(M) acts T(3) on any leaf LeF. 
Axiom 5. T has no leaves of dimension 0, that is G(M)o fixes no points. 
Axiom 6. G(M) preserves the leaves of T. 
Axiom 7. If x,y G LC\U,L G T,U being an open ball, then there is g G G(M)0 

with supp(g) C U such that g(x) = y. 
The following two last axioms are connected with the case of noncompact manifolds. 
Axiom 8. For any x G M and for any g G G(M) such that g(x) = x there exists 

h G G(M)C such that h = g on a neighbourhood of x. 
This is verified for the group of all (possibly leaf preserving) diffeomorphisms 

(cf.[9]). In the foliated case the proof is essentially the same but one should ap­
ply a distinguished chart for a generalized foliation. The existence of such charts has 
been proved in [5]. 

Axiom 9. If {Ui} is a pairwise disjoint locally finite family of open balls and 
gi G G(M) with supp(gi) C Ui, then g = Y[9i € G(M), where f[0. = 9% o n Ui for 
any i, and Ylgi = id on M -\J U{. 

Note that this is an integral analogue of a condition in the definition of a quasi-
foliation in [1]. 

Now we can formulate 

Main Theorem. Let (Mi,ai), i = 1,2, be a geometric structure such that its 
group of automorphisms G(Mi,ai) satisfies either Axioms 1,2,3 and 4, or Axioms 
1,2,3',4,5,6 and 7, and Mi is compact, or Axioms 1,2,3',4,5,6,7,8 and 9. Then if 
there is a group isomorphism $ : G(Mi,Qi) —> t7(M2,o:2) then there is a unique 
C°°-diffeomorphism (j> : Mi —> M2 preserving ai and such that <£(/) = </>/</>_1 for 
each f G G(Mi,ai). 

In particular, any automorphism of G(M, a) of the above type is inner or coming 
from a foliation preserving diffeomorphism. 

Remark. For Cr diffeomorphisms, r finite, the proof of Main Theorem still works 
but we get <j> to be a homeomorphism only. To obtain the C7r-smoothness one should 
apply the theorem of Bochner-Montgomerry as in [8]. 

Let us give examples of admissible groups. 
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Examples: the case transitive. (1) The group of all homeomorphisms of a 
topological manifold (see [19], our proof is much simpler). 

(2) The group Diffr(M), 1 < r < oo. The original method [8] of the proof de­
pends heavely on a theorem of Epstein [7] which states that the commutator subgroup 
is simple. Our pattern [14] is independent of this theorem and is much shorter itself. 

(3) The group G(Mya) where a is either a volume form, or a symplectic form, 
or a contact form [2,3,14]. Again this is a consequence of Main Theorem with some 
modification in first and second cases as Axiom 1 is satisfied by the kernel of the flux 
homomorphism. Roughly, this modification consists in passing to the kernels and 
observing that they verify Axioms 1,2,3 and 4. 

(4) The group of cosymplectic diffeomorphisms. The proof will be detailed else­
where. 

Nontransitive geometric structures plays an increasing role in the geometry. On the 
other hand little is known of "perfectness" theorems, and this reveals the significance 
of Main Theorem. 

Examples: the case nontransitive. (5) The group of all diffeomorphisms of a 
manifold with boundary as well as some of its subgroups [15]. 

(6) The group of all leaf preserving diffeomorphisms of a foliation [16]. 
(7) Let N be a topological manifold of M with dim(N) > 0. Then N can be 

viewed as a geometric structure. It is a consequence of Main Theorem that G(M, N) 
is admissible. 

(8) The group of automorphisms of a regular Poisson manifold. The proof will be 
detailed elsewhere. 

Remark. It is known that all the above groups are locally contractible, so that it 
is not hard to see that their identity components are still admissible. 

3. PROOF OF THE MAIN THEOREM 

The proof follows [16]. From now on for simplicity we denote Gl = G(M^ a;), i = 
1,2. Let T{ be the generalized foliation corresponding to G%

0. By SxG
l we denote the 

isotropy subgroup of Gl at x 6 M{. Next we let 

Fl = §-\SyG\ Fl = $(SxG
x). 

Lemma 3.1. For any Gl satisfying Axiom 3 or 3} all isotropy subgroups are maximal 

For the proof see [19], [8], or [16]. 

Lemma 3.2. Let Gx satisfy Axiom 3 or Axioms 3\6 and 7. Let y € M2 and let C 
be a closed nonempty subset of Mi satisfying Cf\L^L for any leaf L € T\ and 

f(C) = C V/GF,1. 

Then C = {x} and F* = SxG
l. 

The proof follows closely that in [19] or [8]. 
The Main Theorem can be reduced to the following 
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Theorem 3.3. For any y e M2 there exists a unique x e M\ such that ^(SXGX) = 
SyG*. 

In fact, Theorem 3.3 determines uniquely a bijection <j> : M\ -> M2 verifying 
$(SXGX) = S^X)G2. It will follow from the proof that the <j) satisfies 

^(/) = W 1 v/eG1. 

That 0 is a homeomorphism is a consequence of this equality. Now as in [2] or [16] we 
prove by using Axiom 4 that $ is a diffeomorphism preserving geometric structures. 

The proof of Theorem 3.3 consists of several propositions. First we introduce the 
following notation. For y 6 M2, we denote by Cy the totality of open balls U of Mi 
satisfying 

Gl(U)0CF} = 9-l(SyGP). 

Similarly we define a family VX1 x G Mi, as the set of all open balls V of M2 such 
that 

&(V)0cF* = *{SxG
1). 

Let Cy = Mi - \JCy, Dx = M2-\JVX. By making use of Lemma 3.2 we will show 
that both Cy and Dx consist of one element. 

Proposition 3.4. The subsets Cy and Dx are preserved by elements of Fy and F%, 
respectively. 

Proof. Let U 6 Cy and / G -F*. If V = f(U) then Gl(V)0 = fGl(U)0f~
l 

C /Fy 1 / - 1 = Fy1. It follows that f(Cy) c Cy. Similarly g(Dx) c Dx for any g G F*. 

Lemma 3.5. Let y G M2, and let L be a leaf of T\. Suppose that for any open ball 
U C Mi with U n L 7- 0 there is f\ G Gl(U)0 with f2(y) 7- y, where f2 = $( / i ) . 
Then there are open sets V,W C M\ such that 

VnJV = 0, L-VuJVT-0, 

and there are / i , / i G G1(V)0i g\,g\ G Gl(W)0 satisfying 

y 7- h(y) + h(y) ^ y, y^ g2(y) ± fo(y) ̂  y, 

where f2 = $ ( / i ) , / 2 = $(/i),<72 = #Gh),$2 = $(g2)-

The proof is the same as in [16]. 
The following is a clue part of the proof. 

Proposition 3.6. For any y G M2 and for any leaf L G T\ there is an open ball U 
on M\ such that UnL^H and Gl(U)0 c Fy. 

Proof. Let y G M2. For any open ball V on Mi satisfying V n L 7- 0 we may 
assume the existence of/1 G G1(V)0 such that f2(y) ^ y where /2 = $(/i); otherwise 
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we are done. Take then two open sets V, W and / i , / i G G1(V)o, 9u9i € G1(W)o as 
in Lemma 3.5. Then VDlV = 0andG = L - V U V V ^ 0 . 

By Axiom 2 we have h2 G G§ such that Fix(h2) = (M2 — B)U {y} for some open 
ball B at y so small that the equalities 

Hn/2(H) = 0, Hn/2(H) = 0, Hnp2(H) = 0, Hng2(H) = 0 

are satisfied. Let /ii = $~l(h2). Then the two following cases are possible: either (l) 
V U hx(V) J L or (2) V U h(V) D L. _ 

In case (1) take an open ball U such that U O (V U /ii(V)) = 0, and U n L 7- 0. 
For any k\ G G(U)0 one has [ki, [/1, fti]] = id and [ki, [/1, /ii]] = id as supp([/i, hi]) 
and supp([f\, hi]) are contained in V U /ii(V). Hence for k2 = $(&i) we have 

[k2, [A, h2]] = id, [k2, [/2, /i2]] = td. 

By definition we get 

Fix([f2, h2]) = M2 - (B U /2(H)) U {t/, /2(u)} 

and similarly for Fix([/2, /i2]) with f2 instead of f2. Then one gets either k2(y) = y 
or k2(y) = f2(y) by the above equality, and either k2(y) = y or k2(y) = f2(y) by 
the analogous one. This follows from the equality f(Fix(g)) = Fix(g) whenever /,<; 
commute. Consequently we have k2(y) = y as f2(y) 7-- f2(y). Thus G1(U)o C F j , as 
required. 

In case (2) W plays the role of V by assumption. This completes the proof. 

Proposition 3.7. Let y e L e T2. If there is /1 G G\ - Fy
x then $(Gl

c)(y) = L. 

Proof It is visible that G\ and consequently <&(G\) are normal subgroups. Let 
f2(y) = 2/1 7-- 1/ where /2 = $(/i). For an arbitrary 2/2 G L, we wish to choose 
g2 G ^(Gj) such that g2(y) = 2/2- If 2/ = 2/2 we are done; for otherwise choose an open 
ball U with 2/1,2/2 € U,y £ U. Axiom 7 yields /i2 G G2(U)C such that /i2(2/i) = 2/2 
(if dim(L) = 1 taking /2

_1 instead of f2 one may assume that 2/1,2/2 l-e hi the same 
component of L — {y}). Then g2 = h2f2h2l satisfies the claim. 

Proposition 3.8. The set Cy is nonempty for any y G M2. 

Remark. Note that by "traditional" argument this may be shown for some y only. 
This causes that [3] or [8] are not extendable to the nontransitive case. 

Proof. First we show that there is 2/0 G M2 such that $(5a.0G
1) = SyoG

2 for some 
xo G Mi. It suffices to take any y which is not fixed by $(Gj). Then Cy is nonempty. 
Indeed, arguing by contradiction suppose that Cy is empty i.e. Cy is an open cover of 
Mi by balls U{ such that G1(Ut)o C Fj for each i. Then we have Gj C F j , since for 
any / G Gj we can choose a finite subcover { t \ } of Cy such that supp(f) C IJfc ̂ tn 
and we apply Axiom 1. 

Now the quotient Diffr(Mi)c/Diffr(Mi)o is countable by the definition of the 
G°° topology, and so is G^/Gj. On the other hand, G^/Gj is mapped by a map 
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induced by $ onto the leaf passing through y in view of Proposition 3.7. This gives 
a contradiction. 

End of the proof. In light of Propositions 3.4 and 3.6 and Lemma 3.2, there is a 
unique x e M\ such that ^{SxG1) = SyG

2. We define nonempty saturated sets 

Ni = {x G M\ : 3ye M2 ${SxG
l) = SyG

2}, 

N2 = {yeM2: 3x e M\ ${SXGX) = SyG
2}. 

We have that N2 (and similarly Ni) is open. Indeed, if $(Gj) C SyG
2 then cannot 

be ^{SxG1) = SyG
2 as G\ is not contained in SxG

l. This implies that y G N2 iff y 
is not fixed by $(Gj). Hence N2 is open. 

It is not hard to see [16] that we may define a unique leaf preserving homeomor-
phism <j>: Ni -> N2 and that $ and <f> are related by $(/) = cfrf^"1 for any / E G 1 . 

Remark. If M\ is compact, G1 = G1 and Ni = M\. The proof is complete. 
Denote Zi = Mi- N^i = 1,2. Zi are closed sets. It suffices to prove that dZ2 

is empty. Suppose then that z2 G dZ2 and choose a sequence {yi}il\ C N2 tending 
to Z2. Set Xi = ^~1(2/i). Then, passing if necessary to a subsequence, we have the 
following three possibilities: either (a) Xi tends to x0 G Ni, or (6) x» tends to z\ e Z\, 
or (c) Xi has no convergent subsequences. In each case we shall obtain a contradiction 
in the following way. 

(a) yi tends to a point of N2 as <j> is a homeomorphism. 
{b) We apply Axiom 8. Choose f\ G G1 such that f\{z\) -̂ Z\. Set xj = 

fi{xi)y Vi = 0(£i )• Due to the argument from the beginning of the proof, f2{z2) = z2 

where f2 = $(/ i) , and y? tends to z2. Observe that we can assume that f2 preserves 
the orientation at z2 because we can take f\ sufficiently near the identity so that 
/ i = h2 and f2 = h2. On the other hand, by the lemma, there is g2€G2

y g2 = f2 on 
a neighborhood of z2. Then for g\ = $""1(^2) we get g\{xCj = x* and consequently 
gi{z\) ^ z\y which contradicts the definition of Z\ (the elements of Z\ must be fixed 
b y * - 1 ^ 2 ) ) . 

(c) Choose / 2 G G2 such that /2(^2) ^ z2. Setting y* = /2(?/0 and x* = <t> 1{y*), 
we can assume that x* has no convergent subsequences; otherwise (a) or (6) can be 
applied. Passing if necessary to a subsequence one can define by induction gk G G1 

such that 

gk{x2k) = z;fc and Xi, x\ <£ supp{gk) for i ?- 2k, k = 1,2,... . 

We can arrange so that the family {supp{gk)} is pairwise disjoint and locally finite, 
and we apply Axiom 9. There is a diffeomorphism g such that g = g\g2 • • •. By the 
definition we get that ${g) cannot be continuous at z2. This contradiction terminates 
the proof. 
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