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1987 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 28. NO. 2 

Minimal Rearrangements of Sobolev Functions 

JOHN E. BROTHERS*) and WILLIAM P. ZIEMER,**) 

Bloomington, U.S.A. 

Received 10 April, 1987 

1. Introduction 

It is well known that if u: RB -> R is a nonnegative function with compact sup
port, then for 1 = p < oo, 

where u* denotes the spherical symmetric rearrangement of u; c.f. [PS], u* is defined 
by 
(2) u*(x) = sup{t:ti(t)>oi(n)\x\n} 

where <x(n) is the volume of the unit n-ball in Rn and n(t) < oo is the Lebesgue 
measure of the set Et = {x: u(x) > t). Note that fi(t) = |JET*| where E* = {x: u*(x) > 
> t) and \E*\ denotes the Lebesgue measure of E*. The purpose of this paper is to 
show that if \i is absolutely continuous and equality holds in (1), then u is almost 
everywhere equal to a translate of u*. We also construct examples which show that 
this may not be true if jn is not absolutely continuous. 

More generally, we establish the following result: For 1 ^ p < oo let A: [0, oo) -> 
-> [0, oo) be of class C2 and such that 

(3) A(0) = 0 , and 

(4) A1/p is convex . 

Note that (4) implies that A is convex. Further, (3) and the convexity of A imply that 

(5) A is increasing . 

Let u: R" -* R be nonnegative and measurable with compact support. Assume 

*) Research performed in part while a visitor at the Centre for Mathematical Analysis, The 
Australian National University, Canberra, A.C.T. 

**) Research supported in part by a grant from the National Science Foundation. 
Department of Mathematics, Indiana University, Bloomington, Indiana 47405, U.S.A. 

13 



that the gradient VM of u in the sense of distributions is a measurable function with 

(6) f A(\Vu\) < oo . 

Note that (4) implies that u e W1*p(Rn). Denote M = ess sup u = ess sup M* ^ oo 
andC* = {X:VM*(X) = 0}. 

1.1. Theorem. If u satisfies (6), then VM* is a measurable function and 

(7) f A(\Vu*\) Z f A(\Vu\). 
J Rn J Rn 

Moreover, if 1 < p < oo, |C* n M * " 1 ^ , M)| = 0, A is strictly increasing, and 
equality holds in (7), then there is a translate of M* which is almost everywhere 
equal to u. 

For the case A(£) = \€\p this result was recently discussed by Friedman and 
McLeod [FM] under the additional assumption that u is of class Cn, and with 
the hypothesis |C* n M* _ 1 (0 , M)\ = 0 replaced by the weaker hypothesis that \i 
is continuous on the interval (0, M). (|C* n M*~ ̂ 0, M)\ = 0 is equivalent to absolute 
continuity of \i on (0, M); see Lemma 2.3.) However, the proof in [FM] contains 
an error which can be only repaired using the apparently stronger assumption 
\C n M _ 1 (0 , M)\ = 0, C = {x: Vu(x) = 0}. Indeed, in Section 4, we give an example 
of a C00 function u whose distribution function \i is merely continuous and for 
which equality holds in (7) for every p—\ and with A strictly increasing, but yet 
no translate of M* is equal to u almost everywhere. 

If A is strictly increasing and u satisfying (6) is such that equality holds in (7), 
then we prove that Et is equivalent to an n-ball for every t. The example mentioned 
above shows that without the assumption that \i is absolutely continuous, these 
n-balls need not be concentric. Since the sets £* corresponding to M* are also n-balls, 
each £* is a translate of Et. This correspondence induces a mapping T:Rn -> Rn 

of the form 
T(x) = x + T(|X|) 

such that M* = M o T. If \i is continuous, T is lipschitzian. Defining u by u(\x\) = u*(x) 
we prove that if p > 1, then a necessary and sufficient condition for equality in (7) 
is that MY = 0 almost everywhere. Note that |C* n M * - 1 ( 0 , M)\ = 0 is equivalent 
to u'(r) 4= 0 for almost all r such that 0 < u(r) < M. It therefore follows that if 
equality holds in (7) and |C* n M * - 1 ( 0 , M)| = 0, then T' = 0 almost everywhere 
and so T = 0 because T is lipschitian. In case p = 1 the condition MY = 0 is only 
sufficient for equality in (7). For p > 1, our analysis also shows that if / c (0, M) 
is an interval for which VM 4= 0 on u~x(l), then u~%{t} and M _ 1 {S} are concentric 
(n — l)-spheres whenever s, tel. This result was established by Uribe [U] under 
the assumption that ue Cn. 
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In case p = 1 it may not be true that u is almost everywhere equal to a translate 
of u*. For example, if u is any (non-spherically symmetric) lipschitzian function 
whose level sets are (n — l)««spheres, the coarea formula (see Proposition 2.1 below) 
implies that 

f |Vu| = f J^n-1(u'1{t})dt= f ^-^-'{fydt^ f, |Vu*|. , 
J Rn JRn J R» J Rn ,. 

Conversely, we show that if 0 ^ u e W1,1(Rn) with compact: support satisfies 

r iv«*i=f |v«i, 
J Rn J Rn 

then each Et is an open ball. •< 
Finally, we remark that it is possible to prove the analog of Theorem 1.1 for 

Sobolev functions on the n-sphere; the proof will appear in [BZ]. 
The proof of Theorem 1.1 uses techniques similar to some in [FM], [TA] and [U] 

but the generality of our hypothesis requires a delicate analysis that ultimately rests 
on developments that are now basic to geometric measure theory. We also employ 
ideas from [AT]. In the present paper we will only outline the main ideas of the proof. 
Complete details are in [BZ]. We express our appreciation for assistance from Jiri 
Dadok in the discovery of the map T. 

2. Notation and Preliminaries 

We will denote by %A the characteristic function of a set A and by |.A| the 
Lebesgue outer measure of _A. The Lebesgue density of .A at x e R " is defined by 

D(A,x) = h m l ' I . 
r-o \B(x, r)\ 

Here B(x, r) denotes the closed ball of radius r centered at x. We denote by W1,p(Rn), 
1 g p < oo, the Sobolev space of functions in IJ(Rn) whose distributional derivatives 
are also in Lp(Rn). The Lp-norm of u is denoted by ||u||lfJ, = |u| |p + ||Vu||p. 

To begin our analysis, we use H. Federer's theory of functions of bounded varia
tion [F, 4.5.9] to obtain a general version of the coarea formula which is valid for 
Sobolev functions. For this purpose we will adopt the following convention concern
ing the pointwise definition of u: For x e R " w e define 

(8) u(x) = !M + iW 

where X(x) and fi(x) denote the lower and upper approximate limits of u at x, respect
ively. That is, / v . r r .„ V _> 

/ fi(u) = inf {t: D(Et9 x) = 0} , 
and X(x) is defined similarly. 
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2.1. Proposition. If ue WliP(Rn) and f is a nonnegative Borel function, then with 
convention (8) in force, 

(9) f | v u | / = f [ fdjr-Hs, 

Here ^ n _ 1 denotes (n — l)-dimensional HausdorfF measure and on the left side 
we employ the convention 0. oo = 0. 

Another fundamental result from geometric measure theory which we will employ 
is a general version of the isoperimetric inequality. To state it, we first recall a charac
terization of a bounded, measurable set E of finite perimeter, or in the terminology 
of [F], a bounded, measurable set E with the property that d(Rn L_ E) is representable 
by integration. In particular, this means that the current defined by E is an n-dimen-
sional integral current. First the measure theoretic boundary of E is defined to be 

d*E = {x: 0 < D(E, x) < 1} . 

Then E has finite perimeter if and only if ^u'\d*E) < oo; c.f. [F, 4.5.6, 4.5.11]. 

2.2. Proposition. Let E a Rn be a bounded, measurable set with finite perimeter, 
and E* be an n-ball such that \E*\ = \E\. Then 

#en-\dE*) = ^n-\d*E) 

with equality holding if and only if E is equivalent to an n-ball. 

An elementary proof can be found in [B 2]. 

2.3. Lemma. If ue WltP(Rn), 1 ^ p < oo, then on [0, M] the following are true: 

(i) \i is one-one. 

( u \1/n 

—— ) = identity. 
a(n)/ 

(iii) For almost all t, 

(10) oo > -ii'(i) = f IVul"1 d^-1. 
Ju-Ht) 

(iv) [i < 0 almost everywhere. 
(v) n is absolutely continuous if and only \C* n M*_1(0, M)| = 0. 

Proof. It follows from [F, 4.5.9] that Ex has finite perimeter for almost all T. 
Further, for almost all T, 

(11) jr-x(d*Et - U - ^ T } ) = 0. 

We obtain (i) using this, the coarea formula (9) and the isoperimetric theorem. 
The second assertion in the Lemma follows immediately from the fact that \i 

is one-one. 
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We next use the coarea formula (9) to obtain for 0 g t ^ M 

(12) n(t) = \C n M " 1 ^ , M)| + f f IVttj-1 rfjf"-1^, 
Jt Ju-Hx) 

which clearly implies (10). 
Denote by B the set of te[0, M] such that |VM| = oo almost everywhere on 

tt-1{f}. One infers from (10) that (iv) is implied by |JB| = 0, which follows from 
application of the coarea formula. 

Turning to (v) we see from Lemma 2.4 (the proof of which does not depend on 
(v)) that ti* e W1,p(Rn). Applying (12) with u = M* and recalling that \i is the distribu
tion function of M* we infer that |C* n M * " 1 ^ , M)\ = 0 implies that \i is absolutely 
continuous on (0, M). On the other hand, if \i is absolutely continuous on (0, M), 
then (12) implies that |C* ntt*""1^, M)\ is an absolutely continuous function of 
t e (0, M). In particular, if S c (0, M) with |S| = 0, then |C* n M * _ 1 ( S ) | = 0. The 
coarea formula implies that C* n M*""1^, M) = C0V CX where |w*(C0)| = 0 and 
/ B _ 1 ( « * " 1 { f } ) = 0 for t e M*(d). Thus it follows that \C0\ = 0. Finally, 
spn-i ( M * - 1 ^ } ) = 0 only for t = M. m 

2.4. Lemma. If u e PF1>p(Rn), 1 ^ P < oo, fhen M* e WUp(Rn). 

Proof. First consider the case p > 1. Let {uk} be a sequence of smooth regulari-
zers of M and recall^that uk -> u in W^'^R"). It is well known that M* is lipschitzian 
and that | | |VM*|||P = |||VM||]P; c.f. [TA]. Therefore, the norms ||u*||1>p are bounded 
and this implies the existence of a subsequence {ukj} converging weakly toveW1 *p(Rn). 
This, in turn, implies that ukj -* v in U(Rn). One shows that M* = v to complete 
the proof. 

Now consider p = 1. wis a decreasing function and therefore of bounded variation. 
Moreover, Lemma 2.3 (i) and (ii) imply that u is continuous, hence it will be sufficient 
to show that |u(N)| = 0 whenever |N| = 0. This follows with the aid of Lemma 2.3. 

We will employ the following useful characterization of WltP(Rn); c.f. [MO, 3.1.2]. 

2.5. Proposition, u e WltP(Rn) (p ^ 1) if and only if u is equivalent to a function 
ueU(Rn) such that u is absolutely continuous (as a function of one variable) 
on each closed interval in almost every line parallel to the coordinate axes and 
|VM| G L^R"). 

Here VM is the classical gradient; clearly, VM = VM almost everywhere. 
Applying Lemma 2.4 and the Proposition to M* where u e W1,p(Rn), we obtain 

the following (where as in the Introduction, ii(\x\) = M*(X)): 

2.6. Corollary, u is locally absolutely continuous on (0, oo). 

It follows from Proposition 2.5 that u has partial derivatives almost everywhere 
and, consequently, u has an approximate total differential almost everywhere [SA, 
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page 300]. That is, for almost every x0 e R", there is a measurable set A with 
D(A, X0) = 1 and a linear mad du(x0): Rn -> R such that 

] i m K*) - u(xo) " Mxo) (x - xo)\ = 0 

x-*x0 \x — X0\ 
xeA 

3. Structure of an extremal 

3.1. Lemma. Let u satisfy (6). Then for almost all t e (0, M), 

(13) f -4(|VM|) IVMI"1 d^r-1
 = A(|Vtt*|) IVM*!"1 jr-^ii*- 1!^). 

Ju-Ht) 

In case A is strictly increasing equality in (13) implies that 

(14) ^ ? n- 1(5*E,) = j f - ^ i T 1 ^ } ) = J T - ^ I I * - ^ ! } ) 

and, in case P > 1, ̂ f,rt""1 almost everywhere on M " 1 ^ } , 

(15) |VM| = |VM*| = constant on M*_1{f} . 

Proof. Fixing t such that (10) holds we set Ct = M_1{f} and Cr* = M * " 1 ^ } , and 
apply Holder's inequality to obtain 

f A1''(\\-u\)\\7u\'1djr'1 = f [ ^ ( I V M O I V M I - ^ ^ O V M I - 1 ) 1 - ^ ^ ^ - 1 ^ 
J Ct J Ct 

= (\ .4(|va|)|vii|-1rfjr--1Y/P/ff \vu\~1 dMr--1}1-1!-

hence 

(16) f ^(|vu|)IVttl*1 jjr--1 = [-n'(t)Y~p-(\ A1'>(\vu\)\--u\-1djr-1X. 

In case p > 1, equality clearly holds if and only if equality holds in (10) and -4(|Vw|) = 
= constant 3^>n"1 almost everywhere on Ct. If A is strictly increasing, the latter 
statement is equivalent to |Vw| = constant ^>n~1 almost everywhere on Cv 

Referring to Lemma 2.3 we see that \i is one-one on [0, M] and 

tt[a(n)_1 n(t)]1/n = t for 0 < t < M, 
hence 
(17) ^ _ 1(a(n) rn) = u(r) , r = [a(n)"1 fi(t)]1/n . 

Since wis locally absolutely continuous, (17) implies that fi'1 carries null sets to null 
sets and so we infer using the chain rule that for almost all t e (0, M), 

W r / \ - i /Ai l/- ~// \ //A / -'pn-lfri*\ 1 = ď(r)ţ [a(и)-1 л(í)]1/n = tT(г) лЧO/Jř-ҶcГ) 
aí 
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Denoting by |Vw*| the constant value of |VM*| on C* we thus have 

IVw*!"1 JT-^C*) = -M'(r)"1 jT-^Cf) = -ii'(i) ; 

we conclude using (10) that 

(18) f [Vu^1 dtf"-1
 = -//(*) = IVM*!"1 J T - ^ C ? ) . 

Jct 

We also infer using (11) and the isoperimetric theorem that 

(19) JT'^Ct) = ^,/,-1(3*E,) = H^^C*) . 

We next define $(£) = C-41/p(C_1), infer from (3) and (4) that <£ is decreasing on 
(0, oo) and use (4) to verify that 0 is convex. Using Jensen's inequality, ideas from 
[AT] and [B 1] and (5), (18) and (19) we obtain 

(20) f ^1^(|VM|)|VM|-1d^?/|-1 = f <j)(\Vu\-1)dJ^n-1
 = 

Jct Jct 

= jr-^cf) ^dvw*]-1) = ^n-\c";)Allp(\vu*\) \vu*\-'. 

(13) now follows from (16) and (18). (Note that (20) reduces to (19) in case A(£) = 
= |C|P.) Now assume A is strictly increasing. If equality holds in (20), then equality 
holds in (19), whence follows (14). Furthermore, if p > 1, equality in (13) implies 
equality in (10) hence in (18), and thus we conclude (15) using (14). u 

Integrating (13) and using the coarea formula (9) we conclude 

f -4(|Vw|)= f f A(\Vu\)\Wu\-x d^n-xdt = f v4(|Vw* |), 
JRW J Rn Ju-Ht) J Rn 

which verifies the first assertion of Theorem 1.1 
For the remainder of this section we assume that equality holds in (7). 

3.2. Lemma If A is strictly increasing and u satisfying (6) is such that equality 
holds in (7), then Et is equivalent to an open ball Utfor each te [0, M). Further, 
{x: u(x) —̂ M} is equivalent to f) UM = BM. is a closed ball (possibly a single point), 

t<M 

which we assume to be centered at 0. 

Proof. The isoperimetric theorem implies that Et is equivalent to an open ball 
Ut for each t in the set G of t e (0, M) such that (14) holds. The remainder of the 
proof is straightforward. u 

With A and u as in Lemma 3.2 we will now derive a fundamental relationship 
((21) below) between u and w*. To this end, let c(t) denote the center of Ut for t e 
e [0, M) and set c(M) = 0. Now define T: R -• R" and T: R" -> Rn by 

T = C o U , T(x) = X + T(|X|) . 

Note that z(r) = 0 for |r| g r0 = radius BM, hence T\ BM is the identity. 
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3.3. Lemma. Assume that \i is continuous on (0, M). 

(i) For 0 = t < M, Translates dE* to dUt9 and T(Et) = II, u at where at c dUt 

contains at most one point. 
(ii) T and Ta re lipschitzian with Lip (T) = 1 and Lip (T) = 2. 

(iii) There exi'sfs O c Rn swch fhaf |Rn ~ .Q| = 0 and T\ Q is one-one. 
(iv) For almost all x e R", 

(21) u*(x) = « o T(x) . 

(v) For almost all x e R", Tis differentiate at x and dT(x) is one-one. 
(vi) For S <= R", |S| = 0 if and only if \T(S)\ = 0. 
(vii) For almost all x e R", 

(22) VM(X) • v = VM(T(X)) • dT(x) (v) , i;eR". 

Proof, (i) Note that for 0 = t0 = tt < M, 3l/ r i lies within (but possibly tangent 
to) dUto. Thus since JI and u* are continuous by assumption and Corollary 2.6, 
for 0 = f0 < M, 

(23) £* = 5 M u ( U 3 E r * ) , l/,0 = i W U 3 £ I , ) ~ < r r o . 
t>fo f>fo 

(ii) Fix xl9 x2 e Rn. By (23) we can assume xt e dE*t, where 0 = t2 < tt < M. 
Denote rf = |xf|. Then u*(r() = f,, 

|T(x2) - T(x,)\ = |x2 - xt\ + |r(r2) - T ^ ) ! , 
and 

Kr 2 ) - <r i ) | = |c(f2) - c(tt)\ ^ r 2 - r ^ \x2 - JC,J . 

(iii) follows from (i). 
(iv) follows through use of (iii) and Lemma 2.3. 
(v) follows from (i) and the definition of T. 

(vi) By the area formula [F, 3.2.3] and (iii) we have j B JT= \T(B)\ for each 
measurable subset B c R", where JT = |det dT| is the jacobian of T. Further, 
(v) implies that JT(x) > 0 for almost all x e £*,, hence (vi) follows directly. 

(vii) It will suffice to verify (22) for x e £ j . Now (vi) implies that if Au A2,... 
are measurable subsets of U0 such that 

| C 7 0 ~ I M , | = 0 , 
i = l 

then 

0 = {T-'iUo ~ U At)\ = \Et ~ U TTWI • 
i = l i = l 

We thus fix e > 0 and use [CZ, Theorem 13] to find a measurable subset A of U0 

and ut e C^R") such that u | A = ux \ A and \U0 ~ A\ < e. We may assume 
D(A, y) = 1 for y e A. From the remark following Proposition 2.5 we infer 
that we may also assume that Vw = Vut on A. Denote u* = ut o T. The classical 
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chain rule implies that for almost all x e T i(A), 

Vu?(x) = Vux(T(x)) • dT(x) = ^u(T(x)) • dT(x). 

(Here VuJ(x) is the classical gradient.) On the other hand, u* = u* on T~X(A) 
implies that each xeT~i(A) where Vu*(x) exists and D(T"1(A)9 x) = 1, u* is 
approximately differentiate and VuJ(x) = Vu*(x). We conclude that (22) holds 
at almost all xeT'^A). u 

Assuming p > 1 and |C* n u*-1(0, M)| = 0 (which is equivalent to absolute 
continuity of \i by Lemma 2.3), we will show in Section 4 that T = 0, hence Tis the 
identity. In view of (21) this will complete the second part of the proof of Theorem 
1.1. 

4. Characterization of an extremal 

We recall here that u(|x|) = u*(x). 

4.1. Theorem. Let u satisfy (6) with \i continuous on (0, M). Assume A is strictly 
increasing. If p > 1 and 

! A(\Vu\)=í A(\Vu*\) 
JRn J R" 

thenu'x' = 0 almost everywhere. 

Proof. Note that Vu*(x) = u'(\x\) |x|_1 x for almost all x =i= 0. Using the coarea 
formula (9) with u replaced by u*, we infer from (15) and (22) that for almost all 
r0 < r < r± such that ur(r) =t= 0, for W'1 almost all x with |x| = r, the chain rule 
for u* = u o Tholds at x and 

(24) |Vu(T(x))| = |Vu*(x)| * 0. 

For such an r, assuming r'(r) =1-0 we choose x so that also cos 6 < —1/2 where 
9 e (7r/2, 7C] satisfies 

O>cos0 = ^ . - % 
|x| |r'(r)| 

Denoting v = Vu*(x)/|Vu*(x)| = — x/|x| we compute 

|Vu*(x)| = V*(x) . v = ^/u(T(x)) . dT(x) (v) = Wu(T(x)) . w , 
where 

- " + ( - R ) / W - - [ R + ' ' W } 
Setting a = |T'(r)| cos 6 we have 

ax 
т'(r) = — + v0 , x . v0 = 0 , 

x 
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hence 
\w\2 = (1 + a)2 + |t;0|

2 = (1 + a)2 + |T'(r)|2 - a2 < 1 

because |t:'(r)| = 1 < -2cos0 . Consequently, 

Vt/(T(x)) . w < \Vu(T(x))\, 

which contradicts (24). H 

4.2. Remark. The converse to Theorem 4.1 is also true. Assume u satisfies (6), 
and assume there exists a lipschitzian mapping T, T(x) = x + T(\X\), such that 
u* = u oT almost everywhere. If p = 1 and #V = 0 almost everywhere, then 
equality holds in (7). 

4.3. Proof of Theorem 1.1. The first part of the Theorem was proved following 
the proof of Lemma 3.1. For the proof of the second part of the Theorem, note that 
in view of Lemma 2.3(v), \i is continuous on (0, M) and u'(r) 4= 0 for almost all 
r0 = radius BM < r < rt = radius E*. Consequently, Theorem 4.1 implies that 
T' = 0 almost everywhere on (r0, rt), and this in turn implies that T = 0 because T 
is lipschitzian (hence absolutely continuous) and T(r0) = 0. In view of (21) this 
completes the proof. u 

4.4. Examples. Here we construct radially decreasing functions w and translating 
functions T such that wV = 0 almost everywhere and T' # 0 on some set of positive 
measure. Thus T is not constant and so u = w © T~x is not equivalent to a translate 
of u* = w. (Here, as always, w(x) = vv(|x|)). On the other hand, equality will hold 
in (7) for such functions because vvV = 0. (Recall Remark 4.2.) 

First we consider a nonnegative, decreasing, lipschitzian w: [0, oo) -> R with 
compact support. If vv' = 0 on a set which is equivalent to an interval I with |/| > 0, 
then w 11 is constant because w is absolutely continuous. It follows that the level set 
{x: w(x) = w(|x|) = t0}9 {t0} = w(l), contains an annulus {x: Qt < \x\ < Q2}. Fix 
0 < c < Q2 — QX and define 

My) > \y\ = 0i > 
u(y) = yo> Qi < \y\ <Qi> 

[w(y - ce^) , \y\ = Q2 . 

Clearly, u and u* = w have equal distribution functions and (49) holds. Note that 
the distribution jx is not continuous at t0. 

Next consider a nowhere dense, closed C0 c: (0, 1) such that |C0| > 0 and 

(25) | c 0 n / | < | / | 

for every interval / <=. [0,1] with |/| > 0. Define 

«(r) = | [ r , l ] ~ C 0 | . 
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w is strictly decreasing by (25). Moreover, w is lipschitzian and w'(r) = 0 for almost 
all r e C0. Define 

<r) = i|[0, r] n C0| *i . 

Clearly W'T' = 0 almost everywhere. The map T(x) = x + T(|X|) is one-one with 
Lip(T_1) = 2, hence u = Wo T"1 is lipschitzian. w is the symmetrization of u; 
however, w* = w is not equivalent to u because |T(1)| = i|C0| =1= |T(0)|. Equality 
holds in (7) by Remark 4.2. 

We next construct a smooth extremal u such that u + w*. (However, note that 
the above method of constructing u from w = u* will not work because T cannot 
be C1.) It is well known that there exists fe C°°(R) such that / = 0, spt/ c [0,1] 
and C0 = (0,1) n {x:f(r) = 0}; cf. [K, page 28]. By following / with g e C°°(R) 
such that g | (0, oo) > 0 and spt g = [0, oo], we obtain a function satisfying the 
conditions on / and such that all derivatives of g of vanish on C0. Define 

w+(r) = a L 9°f, 

where a e R is chosen so that w+(0) = 1. w+ is clearly strictly decreasing on [0,1], 
hence w+(C0) is closed, nowhere dense and of measure 0. 

Let c be a continuous increasing function on [0,1] such that c(l) = 0, c(0) = - 1 , 
and c is constant on each component of [0,1] ~ w+(C0). (c is a generalized Cantor 
function. In case C0 is obtained by shrinking then translating one of the standard 
Cantor sets of positive measure obtained by removing intervals of length e/3k from 
[0,1] where 0 < s < 1, one can take c = — ft o U+1 where ft is the Cantor function 
constructed using C0 such that ft(0) = 0, ft(l) = 1.) Observing that w+l — c is 
strictly decreasing on [0,1], we define w: [0, 2] -» R so that 

(26) w~1 = wl1-c, 

and denote 

(27) TX = c o w . 

(26) implies that Lip (TX) = 1. Moreover, it also follows from (26) that w is C1 

with {r: w'(r) = 0} = w_1(w+(Co)). (See the following paragraph.) Differentiating 
(27) we have for almost all r such that w'(r) 4= 0, T'(r) = c' o w(r) w'(r) = 0 because 
\v(r) ^ w+(C0). Consequently, 

(28) Tiw' = 0 almost everywhere . 

We also conclude that \{r: w'(r) = 0}| > 0, for otherwise x1 would be constant, 
contradicting TX(0) = 0, Tt(2) = —1. 

We next verify that w is C00. Clearly, vv is smooth on the complement of 
w~1(w+(C0)). Inasmuch as all derivatives of w+ vanish on C0, it will suffice to show 
that all derivatives of w vanish on w"1(w+(C0)). Thus fix r0 e w~1(w+(C0)). Clearly, 
w'(r0) = 0 because (w"1)' (t0) = (W+1)' (t0) = -co , t0 = w(r0). Assume inductively 
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that ww(r0) = 0, and set s0 = wZ\t0). Since for tf w+(C0), wm(w \t)) = 
= w(

+

J) (w+

r(t)), we have by (26) 

0 = lim 
S-+SO 

W V(s) 

= lim 
f-+*o 

S - S 0 | 
= lim 

t-*t0 

w(

+>;Ҷt)) 
W~+Қt) - w+Қt0) 

•• lim 
r-*ro 

W ,(*), (r) 

r -r0 

= Ь(-+Di ы. 

w( 

IK'W - c(t)] - [*;»(«„) - c(f0)]| 

\[w-+\t) - .,;»(,.)] - [c(0 - c(.0)]| ^ |w;»(«) - w;»(ib)| • 

Now define for x e Rn, 

, ( x ) f*(M). M ^ 2 , 
[0, otherwise. 

Since c is constant on neighbourhoods of 0 and of 1 because C0 <= (0, 1), and since 
spt w+ c {r:r ^ 1}, it follows that all derivatives of w vanish at 0 and at 2, hence 
weC°°(Rn). Defining 

f 0, r < 0, 
<r) = i\*i(r)ei> 0 = r = 2, 

-el9 r > 2, 

we define T(x) = x + T(|X|) and u = w o T"1 as above. In view of (28), Remark 4.2 
implies that u is extremal; u 4= w* = w because T is not constant. 

Finally, it is proved in [BZ] that u e C°°(Rn). 
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