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Introduction 

This note intends to be a survey on the n-commutativity for equivalence relations 
in regular categories where, n-commutativity means that for any relations R and S 
on X9 it is 

RSRS . . . = SRSR . . . 
n times n times 

The most interesting cases in this sequence of conditions are those corresponding 
to n = 2 and n = 3; in particular the 2-commutativity (or simply commutativity) 
is the base to develop the theory of MaTcev categories. 

MaTcev categories are the categorial generalization of MaTcev varieties and have 
been introduced in [2], in relation with the problem of finding an appropriate 
context to develop "non commutative homological algebra". 

As an abelian category is an exact category that is additive, similarly a Malcev 
category is an exact category with permutable equivalence relations. We showed 
that with this definition basic results of homological algebra remain valid. 

§1 MaTcev varieties 

We first recall some classical results in the case of algebras. For more details see 
[8] or [14]. 

Let A be an algebra; by a congruence relation on A we mean an equivalence 
relation R on A such that it is a subalgebra of A x A. We will write aRb to denote 
that (a, b) e R. 

Clearly if (Ri)iei are congruences on A9 the set-theoretical intersection A#* is 

*) Dipartimento di Scienze Matematiche, Universita degli Studi di Trieste, 1-34100 Trieste, 
Italia. 
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still a congruence relation. Moreover, if we take the join VRt of the R( as equivalence 
relations, i.e. the transitive closure of the set-theoretical union, then it is again a con
gruence. So congruences on A form a lattice, that we denote by Congr(A). 

Clearly Congr(A) is a complete sublattice of the lattice of all equivalence relations 
on A; further Congr(A) is an algebraic lattice. Consider now the product RS of two 
congruences R, S on A, where RS = {(a, b) \ 3c with aSc and cRb). 

RS is a subalgebra of A x A, but not necessarily a congruence. If RS is a con
gruence, then RS = R v S. 

We will say that the congruences on A commute if, for any R, S congruences 
on A, it holds RS = SR. 

Varieties satisfying this commutativity property for all algebras, have been at 
once recognized as a very good framework for many purposes. For example, already 
in the 40's it was known (Ore) that such algebras admit a unique factorization theorem 
for direct decomposition of congruences. 

The classical result in this area is that of A. I. Malcev [13]. 

Theorem 1.1. All the algebras of a variety "V have permuting congruences 
if and only if there is a 3-ary term p of the type of if such that the equations 

p(x> y>y) = * and p(x, x, y) = y 

are valid in ir. 

Proof. We give this proof, because it offers the basic ideas which will be developed 
in the generalized n-cases. 

If there is a term p such that these equations are valid in TT, then every algebra 
A e y has a term operation pA obeying the equations. 

Suppose R and S congruences on A and let (a, b) e SR i.e., there exists ce A 
with aRc and cSb 

S 
c > b 
A A 

R *R 
i 

S • 
a > p(a, c, b) 

Then, if we consider d = p(a, c, b), we get a = p(a, b, b)Sp(a, c, b) and p(a, c, b) 
Rp(a, a, b) = b, so aSd and dRb, hence aRSb. 

Conversely, let us suppose that the congruences permute for every algebra of rT 
and let A = F3 be the free algebra on 3 generators x, y, z. Define / as the endo-
morphism of A satisfying f(x) = f(y) = x, f(z) = y, and define g as the endo-
morphism of A satisfying g(x) = x and g(y) = g(z) = y. Take R = ker f and 
S = ker g; consequently xRy, and ySz, hence (x, z) e SR = RS, so there exists 
an element ueA with xSu and uRz. This means that there is a 3-ary term p such 
that u = pA(x, y, z). 
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To see that p has the required properties consider 

x = g(x) = g(u) = g(pA(x, y, z)) = pA(g(x), g(y), g(z)) = pA(x, y, y) . 

Similarly it follows that y = pA(x, x, y). These equalities in F(x, y, z) are equivalent 
to the desired conclusions. • 

If the congruences on A permute, then RS = SR implies that RS is a congruence, 
so RS = R v S. One of the main consequences of this property is that the lattice 
Congr (A) becomes modular. 

Remark 1.2. It has been shown by Jonsson (1953) that, if A is an algebra with 
commuting congruences, then Congr(A) satisfies an identity that is stronger than the 
modular law, the so called Arguesian identity defined by the following: 
consider six elements ai9 bt (i = 0, 1, 2) of a lattice and form the elements 

c0 = (ax v a2) A (b1 v b2) 

and cyclically, and let 

c' = c0 A (c1 v c2) . 
The inclusion 

(a0 v b0) A (a! v bx) A (a2 v b2) = (ax A (C' V a2)) v b-

is called the Arguesian identity. 
Varieties with permuting congruences are also called Malcev varieties. Terms 

and operations satisfying the equations in Theorem 1.1 are called Malcev terms 
and Malcev operations. 

Other conditions equivalent to the commutativity of congruences were found 
by Findley (1960) [5]; we will consider them in the general context of §2. 

Examples 1.3. 

1) Groups are a Malcev variety with p(x, y, z) = xy~xz. 
2) Rings and Modules are Malcev varieties. 
3) Hey ting algebras are a Malcev variety where p can be given by: 

p(x, y, z) = ((z -> y) -> x) A ((x -+ y)-> z) 

In this situation the lattices of congruences are distributive. 
4) Boolean algebras are a Malcev variety. 
5) Relatively complemented lattices are Malcev. 
6) Quasi-groups are algebras (Q, ., \, /) with three binary operations obeying the 

laws: 

y.(y\x) = x = (x/j;).j>and 

y\(y.z) = z = (z.y)jy. 
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They form a Malcev variety with 

p(x,y,z) = [Xl(y\y)-].(y\z). 

7) It is easy to see that lattices do not have permuting congruences, also if they 
have distributive congruence lattices. 

§2. MaTcev categories 

The problem of studying the categorical generalization of Malcev varieties was 
first considered by J. Meisen [15], but under quite strong conditions on the category. 

Our aim is to show that it suffices to consider a regular category to maintain the 
validity of some algebraic results of Malcev varieties. We recall that a regular category 
is a category & such that: 

(1) S is left exact; 

(2) every effective equivalence relation (= kernel pair) has a coequalizer; 

(3) regular epimorphisms are stable under pull-backs. 

Toposes, categories of algebras and abelian categories are all examples of regular 
categories. 

A relation R from X to Y in &, is defined as a subobject R -> X x Y. In a regular 
category the existence of regular images allows us to define the composite of two 
relations as follows: if S -> Y x Z is another relation, their composite SR is the 
image in X x Z of the pullback of R -» Y<- S. That composition is associative 
follows from the stability of regular epimorphisms. Then, if we write R:X -> Y 
for R -> X x Y, we obtain a category Rel($) of relations of S, whose identities 
are diagonals X -> X x X. 

Note that Rel(S) has the following additional structure: 

(i) a local order preserved by composition, which has finite intersection. 
(ii)an involution ()° : Rel(S)° -> Rel(S) which is the identity on objects and 

which preserves the local order. 

(iii) an embedding 8 -> Re\($) which associates to every arrow / : X -> Y in & 
its graph | / | -> X x Y. 
We will write/for | / | , and call such relations maps. 

We also recall the following properties: 

(a) An arrow R:X -> Y of Rel(S) is a map if and only if it has a right adjoint 
in the bicategory Rel(£), that is RR° = 1 and R°R = 1. 

(b) Composition with maps on the right distributes over intersection: 

(Rf)S)f=Rff)Sf. 
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(c) An ar row/ is a mono in $ if and only if/0/ = 1 and a regular epi if and only 
i f / / ° = 1. 

(d) For every relation R : X -> Y, there exists a pair of maps / and g such that 

Such a pair is essentially unique and is called a tabulation of R. 

(e) The regular image of a m a p / : X -> Yviewed as a subobject of Y, is character
ized as a map i such that 

i°i = 1, ii°=ff°. 

(f) In Rel(&) we can apply the following Freyd modular laws: 

RSf]T=R(Sf]R°T) 

RSf)T=(Rf] TS°)S. 

It is clear that in Rel(£) an equivalence relation (or congruence) can be simply 
described as a relation R : X -> X, such that lx = R, R° = R and RR = R. 

Then, we have the following: 

Proposition 2.1. For a regular category $, the following conditions are equivalent: 

(1) composition of equivalence relations is commutative; 

(2) composition of effective equivalence relations is commutative; 

(3) every relation R : X -> Y is difunctional, that is RR°R = R; 

(4) every reflexive relation is an equivalence; 

(5) every reflexive relation is symmetric; 

(6) every reflexive relation is transitive; 

(7) the composite of two equivalence relations is an equivalence relation. 

Proof. 

(1) => (2): trivially. 

(2) => (3): if R = gf° is a representation of R, then 
RR°R = gf°fg°gf° = gg°gf°ff° = gf° = R s ince/ 0 /and g°g are effective 
equivalence relations and maps are difunctional. 

(3) => (4): if 1 = R, the R° = 1R1° = RR°R = R and RR = .R1.R ^ KK°K = I?. 

(4) => (5): trivial. 

(5) =>(7): 1 = SR implies SK = (SR)° = K°S° = RS, hence SKSR = S5K.R = 

= SR. 

(7) => (1): similar to (5) => (6). 

(4)=>(6): trivial. 

(6) => (1): RS = 1RS1 g SRSR = S# since 1 g 5K. • 
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Remark 2.2. 

In an algebraic context, difunctionality can be described geometrically in the follow
ing way: 

R ^ A x A is difunctional, if and only if for any "square" in A x A, when three 
vertixes are in R, then the fourth is in R too. 
This idea has been made more precise by Carboni [3]. He showed, that for pretopoi 
difunctional relations correspond to exact square. 

Corollary 2.3. For a regular category S, satisfying any of the conditions of 
Proposition 2.1, the semilattice of equivalence relations on any object X is a modular 
lattice. 

Proof. If R and S are equivalence relations on X, then RS = SR is also an 
equivalence relation, and R :g RS, S ^ RS. 
If Tis another equivalence relation on X with R ^ T and S = T, then RS = 7T <; 

= T, so RS = R v S. 
If R = T, Freyd modular laws imply (R v S) A T = RS A T = i*(S A K°T) = 

^ K(S A T°T) = K(S A T) = R v (S A T). • 

All the examples of regular categories mentioned before have the following additional 
property: 

Definition 2.4. An exact category is a regular category in which every equivalence 
relation is effective. 
It is easy to see that S is exact if and only if Rel(S) satisfies the following axiom: 
for every equivalence relation R, there is a map p such that p°p = R and pp° = 1. 
Now, we can give the following: 

Definition 2.5. A Malcev category is an exact category such that equivalence 
relations commute. 

Examples of Malcev categories 2.6. 

(1) Models of a Malcev variety in any exact category; 

(2) abelian categories; 

(3) inf-semilattices viewed as ordered categories; 

(4) any slice of a Malcev category; 

(5) any functor category &* if S is Malcev; 

(6) the dual of any topos. 

§3. An application 

Malcev varieties have been widely studied in relation with different problems (see 
for example [18]); Lambek in [12] pointed out that they should offer a good con-
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text to develop basic tools of homological algebra, thus serving as a non-additive 
generalization of modules. 

Our aim is to show that, while proving these results for Malcev varieties, one 
never uses the fact that the category is varietal, but just the semantical condition of 
having permuting congurences. 

This remark suggests to define a notion of MaTcev category as given in §2, to 
obtain a categorical non-additive generalization of abelian categories. 
So, as 

abelian = exact + additive 
now, we have 

Malcev = exact + RS = SR, V R, S congruences. 

We have proved that with this definition basic facts of diagram chasing, like the 

Snake Lemma, remain true. 

We recall the main results; for more details see [2]. 
In modul theory, we have the following. 

Lemma 3.1. Consider the diagram 

(i) 

B 

(2) 

-*C 

D -»E 

and suppose that 

(i) the rows are exact; 

(ii) the two squares are commutative; 

then, 

Im(l) s Ker(2), where 

_ /4s Im B f] Im Xr . ,-N Ker (yu) _ 
Im (1) = — ^ - J J , ker (2) = - ^ - — . Q 

w ImpX w Kerfi v ker fi 
This result is extremely useful in the diagram chasing since it allows us to replace 

elements by squares, and a good part of homological algebra can be developed in 
this way. 

We show that this Lemma can be also considered in a Malcev category. For any 
regular &, we say that the following rows 

(i) 

(n) 
are exact, if and only if 

A • 
Яi џ 

A • 1 B -
я2 

* E . 

*> 

Џl 

D 

1 B -
я2 

* E . » 
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(I) Im(ku X2) = ker \i, which in the category of relations is 

\i°\x = A-A2, and 

(I) ImX = Ker (fil9 JU2), (where Ker denots the equalizer), which in the category 

of relations is 

= i п џЏ • 

Theorem 3.2. Let £ be a Malcev category and consider the following diagram: 

Ai 

A2 

- ( 1 ) 

=ÎB 

ß (2) 

D З F 

If the rows are exact, and the four squares commute, then 

Im (1) ^ Ker (2), where 

Im(ì) 
ImPQIml 

Im (fiku 0A2) ' 
Ker (2) = 

Ker (y-ji, y2/i) 

Ker \i v Ker fi 
D 

The use of the equational calculus of relations gives a very useful tool to prove the 
Theorem, and also to clarify the exact nature of the hypothesis. 

It is clear that this result reduces to the classical situation of modules, by taking 
the second maps of each pair to be trivial. 

We applied the theorem to show the validity of the Snake Lemma in Malcev 
categories (again see [2] for the complete details). 
Similarly, many other results of varieties, can be interpreted in this general context. 

§4. On the n-commutativity 

The original proof of Theorem 3.2 in the case of groups (Lambek [11]), was based 
on a classical Isomorphism Theorem due to Goursat (1889 [7]), saying that if 
R : A -• B is relation in Group, then 

Dom R ImR 

R°R RR° 

the same argument was also used by Lambek [12] in the context of Malcev varieties. 
Now, if £ is an exact category and R : X -+ F a relation in &, we can define the 

domain of R as the map i : 17 -> X such that i°i = 1 and ii° = 1 A R°R, and the 
image of R as the map y : V -> Y such that y°y = 1 and yy° = 1 A RR°. Then it is 
possible to show that the Goursat Isomorphism Theorem holds in £ if and only if: 

(G) for any relation R : X -> Y, it is RR°RR° = RR° (see [2]). 
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We will call this axiom (G) the Goursat axiom and an exact category verifying (G) 
a Goursat category. 
Trivially, £ Malcev implies $ is Goursat. 
It is possible to characterize axiom (G) in terms of 3-commutativity for the composi
tion of equivalence relations, giving a result similar to Proposition 2.L 

Furthermore these Malcev and Goursat situations are just the first two cases of the 
following general setting: 
Given two equivalence relations R and S on an object X of a regular category &, 
we have on X the increasing sequence of relations: 

(4.0) 1 = R = RS = RSR = RSRS = . . . , 

which we denote by 

(R, S)0 = (R, 5)i = (R, S)2 = (R,S)3= . . . . 

For a general relation P : X -> Y, we use a similar notation, writing: 

(p, p%, (p, p%, (p, p%, (p, p\,... 

for the terms of the sequence: 

P, PP°, PP°P, PP°PP°, . . . . 

Then, the following holds: 

Proposition 4.1. For a regular category $ and for any n _ 2, the following 
conditions are equivalent: 

(a) for any relation P :X-+Y in &,we have (P, P°)n+1 = (P, P°)„-i; 

(b) for any reflexive relation E :X -> X in S, (E, E°)n^x is an equivalence rela
tion; 

(c) for any such reflexive relation we have (E, -E0),,-! = (E°, E)n^x; 

(d) for any such reflexive relation we have (E, E°)„^l (E, E°)n_l = (E, K0),..,!; 

(d) for all equivalence relations R,S : X -• X in S, we have (R, S)n = (S, R)n; 

(e) for all effective equivalence relations R and S on X, we have (R, S)n = (S, R)n; 

(f) for all equivalence relations R, S on X we have (R, S)n+1 = (R, S)n; 

(g) for all such equivalence relations, we have (R, S)m = (R, S)nfor all m ^ n 
that is, the sequence (R, S)k is stationary at k = n; 

(h) for all such R, S, the relation (R, S)n is an equivalence relation. 

Proof. See [10] for the proof, except for condition (c') that is not given in that 
paper. 
In this case it is trivial that (b) => (c'). 
Conversely, we show that (c') => (f). 
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If R and S are equivalence, take E = RS then, since (E, E°)n^1 = (R, S)n, we get 
(R, S)n (R, S)n = (R, S)n, so (f) follows by (4.0). • 

We say that & verifies the condition Cn (n commutativity) if it satisfies one of the 
conditions of Proposition 4.1; here n = 2, the proposition above being false for 
n = 1. 
Of course Cn implies Cm for m = n, and if & is exact, then C2 corresponds to the 
case of Malcev categories and C3 to the case of the Goursat categories. 

Corollary 4.2. If $ satisfies Cn, the ordered set ^q(X) of equivalence relations onX 
admits a join given by R /\S = (R, S)n. 

Proof. Similar to the case n = 2. 
Moreover, we also get: 

Corollary 4.3. If $ satisfies C3, the lattice $q(X) is modular, for any X e &. 

Proof (see [10]. You must apply Freyd modular laws twice. • 

If the regular category & is a variety of algebras, properties concerning n-com-
mutativity of congruences have been widely studied (see [8], ([14]). 

One of the main result in this direction shows that n-commutativity can be described 
in terms of operations and "Malcev like" conditions. 

Proposition 4.4. [9]. All the algebras in a variety f have n-permutable congruen
ces if and only if, there are 3-ary terms p0, pl9 . . . , pn of the type of ir, such that 
p0(x, y, z) = x, pn(x, y, z) = z, pt(x, x, z) = pi + 1(x, z, z) i < n, hold in TT. 
From universal algebra we also get a very interesting list of examples: 

(1) An implication algebra is an algebra (A, ->) with one binary operation satisfying 
the laws: 

(x -> y) - • x = x 

(x -> y) -+ y = (y -» x) -> x 

x -> (y -* z) = y -> (x -> z) 

Implication algebras are congruences 3-permutable but not 2-permutable [16]. 

(2) A right-complemented semigroups is an algebra (A, ., *) with two binary opera
tions satisfying the identities 

x.(x* y) = y.(y*x) 

(x . y)*z = y*(x * z) 

x . (y * y) = x 

Right complemented semigroups have 3-permutable congruences [16]. 
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(3) Let k be an integer greater than 1, and let Ck denote a k-elements chain constructed 
as a lattice, then Ck has k-permuting congruences but does not have (fc-1) per
muting congruences. 

(4) Clearly models of algebras of type (1) and (2), in any exact category, give ex
amples of Goursat categories. 
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