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1994 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 35, NO. 2 

Automorphism Groups of Complements of Points 

M. HRU3AK 

Praha*) 

Received 15. March 1994 

A metrizable topological space (graph resp.) having no nontrivial automorphism with the automor
phism groups of complements of points isomorphic to an arbitrary prescribed group is constructed. 

1. Introduction 

J. de Groot [3] in 1959 proved that every group is isomorphic to the group of 
all homeomorphisms of a topological space onto itself. His result was the starting 
point for further research in the area of representations of groups, semigroups, and 
categories in topological categories. It was shown in [8] that every monoid can be 
represented by the monoid of all nonconstant continuous mappings of a metrizable 
topological space into itself (i.e. for every monoid M there is a metrizable topological 
space such that the system such that the system of all of its nonconstant selfmaps 
forms a monoid which is isomorphic to M). Later it was proved by V. Koubek in 
[4] and V. Trnkova in [7] respectively that every small and even every concrete 
category can be represented in the category of topological spaces. It turned out that 
in such representations the rigid spaces (i.e. spaces such that every continuous 
selfmap is either a constant or the identity) and automorphism rigid spaces (i.e. 
spaces such that the only autohomeomorphism is the identity) play very significant 
role. Useful example of a rigid space was constructed by H. Cook in [1]. In fact 
many of the results concerning representations in the category of topological spaces 
can be proved in the category of graphs first and then transferred into topological 
spaces using the "arrow construction" with the Cook continuum or another suitable 
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rigid space. In such cases the theorem proved by P. Vopenka, A. Pultr, and Z. 
Hedrlin in [9], namely that there exists a rigid binary relation on every set, is widely 
used. An interested reader can obtain complex information on the subject in [6]. 

The aim of the present paper is to show that the automorphism rigidity can be 
destroyed after deleting single arbitrarily chosen point (vertex resp.). However there 
are both a graph and a metrizable topological space which are automorphism rigid 
and they remain automorphism rigid after deleting any vertex (point resp.). 

2. Preliminaries 

Let Graph denote the category of all directed graphs, i.e. the category whose 
objects are all pairs (5, R), where S is a set and R g S x S. A mapping / : S -> S' 
is a morphism of Graph (denoted by / : (S, R) -> (S\ R')) iff it satisfies the following: 
(f(s\), f(s2)) e R' whenever (sh s2) e R. We recall that the graph (5, R) is rigid iff 
the only existing homomorphism / : (S, R) -> (S, R) is the identity. By Aut (A) we 
mean the group of all automorphisms of A, where A is either a topological space 
or a graph. A = B means that A and B are isomorphic groups (graphs, top. spaces 
resp.). The following Theorems are necessary for the constructions contained in . 
this paper. Their proofs are nontrivial and can be found for example in [6], therefore 
we do not present them here. 

Theorem 2.1. There exists a rigid binary relation on every set. 

Theorem 2.2. For every group G there is a graph (X, R) with the group of all 
automorphism isomorphic to G. 

There are full embeddings of Graph into its full subcategory of all symmetric 
graphs and the full subcategory of all graphs without cycles. So we may assume 
the graphs mentioned in Theorem 2.2 to be either symmetric or without cycles. 
Theorem 2.1 can be restated in the following way: There are arbitrarily large rigid 
symmetric graphs (graphs without cycles resp.). Let us remark that the graphs 
constructed in [9] are connected, which will be important for our later constructions. 

Let us mention some properties of the Cook continuum, the topological space 
which is basic for many of the constructions not only in this paper. Recall that the 

Cook continuum ^ is a compact connected metric space of cardinality 2No satisfying 
the following two conditions: 

1. ^ is a hereditarily indecomposable continuum. 
2. For every subcontinuum A of ^ and every continuous mapping / : A -> #, 

either / is a constant or the inclusion. 
(A continuum is indecomposable iff it can not be obtained as a union of two of its 
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proper subcontinua. Hereditarily indecomposable means that also every subconti-
nuum is indecomposable.) 

The following two useful Lemmas concerning connected compact spaces can be 
found in [5]. 

Lemma 2.3. Let %> be an indecomposable continuum. There are 2K" pairwise 
disjoint nondegenerate subcontinua of c€. 

Lemma 2.4. If A is a closed subset of a continuum X such that 0 =(= A =t= X 
then for every component C of the space A we have C n BdA =t= 0. 

Claim 2.5. Let A be a subcontinuum of a Cook continuum Then Aut(A) ^ {1} 
and Aut(A\{x}) ^ {l}for every xe A. 

Proof. Aut(./l) = {1} follows immediately from 2. 
Let x e A. In order to prove Aut(.4\{x}) ̂  {l}let's observe that ^4\{x}is connected. 

Suppose on the contrary that there are C, D nonvoid disjoint clopen subsets of 
AL\{x}such that C u D = ^4\{x}.Butthen C = C u {x}andD = D u {x}are proper 
nondegenerate subcontinua of the hereditarily indecomposable continuum A such 
that A = C v D — which is a contradiction. 
To finish the proof it is sufficient to show that Vy e ^4\{x}there exists a nondegenerate 
subcontinuum of ^4\{x}containing y. This immediately follows from Lemma 2.4. • 

3 . Main theorems in Graph 

Notation: Let <& = (X, R) be a graph and x e X. <&\{x} denotes the induced 
subgraph (X\{x},i? n (X\{x}) x (X\{x})). 

The aim of this section is to present a proof of the following: 

Theorem 3.1. For every group G there is a graph <& = (X, R) having no 
nontrivial authomorphism such that for every xe X Aut(&\{x})= <&. 

Lemma 3.2. For every group G there is a graph J^G = (Y, Q) with a distin
guished vertex xG e Y such that 

1. Aut(jfG) =S {1} 
2. Aut(.?fG\{^G}) s G 
3. Aut(JfG\{y})^ {l}for every ye Y, y #= xG. 

Proof. By Theorem 2.2 there exists a graph JfG = (Z, S) without cycles such 
that Aut(;/fG) =_. G. Using Theorem 2.1 we obtain a rigid connected symmetric 
graph mG = (17, T) such that card(U) ^ card(Z). 

Put 7 = Z u (J U x {z} x {i}u {XQ}. 
1 = 0,1 
zєZ 
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To create the relation Q and Y we put: 
1. Q[Z = S 
2. Vz e Z, Vi G {0,1}, Va,beU: ((a, z, i), (b, z, i)) e Q iff (a, b)eT 
3. VzGZ,VaGt/ : ( (a ,z , 0),(a, z, 1)) G Q 
4. VzeZ,VaeU: ((a, z, 1), z)eQ 
5. For every z e Z w e choose xz G 1/ such that xz =(= xz, whenever z ^ z' (it is 

possible since card(U) ^ card(Z)). 
VzGZ:(xG,(xz,z,0))GQ 

There are no other arrows than the ones indicated by the rules 1. —5. 

Let's verify that the required conditions are fulfiled. 
a) Let's prove that Aut(« f̂ G) = {1}: Let g: ^f G -• J4?G be an automorphism. 
g(xG) = xG since deg^c(xG) = card({y:(y, xG) e Q}) = 0 and xG is the only such 
vertex. So VzeZlz' eZ such that g((xz, z, 0)) = (xz, z', 0). (U x {z} x {0}, 
Q [ U x {z} x {0}) are rigid connected symmetric graphs for all zeZ. There is 
just one morphism between any two of them hence z = z' and 
g [ [j U x {z}x {0}= id. Also g [ [j U x {z} x {1} = id which implies 

-etf zeZ 

VzeZ g(z) = z so g = id^c. 
b) Let g be an automorphism of Jf ^{.x^.Then obviously g(\J U x {z} x {i}) g 

zeZ 
g (J C7 x {z} x {i} for i G {0,1} and g(Z) g Z. 

zeZ 

So every automorphism of Jf G\{^G} is uniquely determined by an automorphism 
of Jf# and every automorphism of X? determines the unique automorphism of 
J^G\{XG}. Therefore we may conclude that Aut(^7

G\{xG}) ^ G 
c) The proof that for Vy e Y, y 4= xG Aut (jf G\{y}) = {1} is easy using the same 
arguments as in a). • 

This proposition can be of some interest on itself but we state it in order to prove 
Theorem 3.1. 

Proof of Theorem 3.1. Let an arbitrary group G be given. Consider the graph 
00 

tfG = (Y, Q) from Lemma 3.2. Put I = (J W(Y\{:XG}) (where nX denotes the set 
n = 0 

of all functions from n to X). Take for every f el one copy of the graph Jf7 G (say 

Put # = ® jtri, <s = # / ~ , 
fel 

where ~ is defined as follows :Vf, gel such that g = f^{y}: yf ~ xG (w stands 
for the concatenation). 
Let us remark that the factorisation and the coproduct are made in the category Graph. 
By an easy induction it can be verified that the resulting graph <$ = (X, R) is rigid 
with respect to automorphisms. 

26 



Aut(^\{x^}) = G holds since automorphisms of SA{XQ} are in one-to-one corres
pondence with the automorphisms of JfG and Aut(ifG) ^ G. 
Let x e X, x 4= x% and g : <&\{x} -> <&\{x} be an automorphism. Then g(x°G) = x% 
since deg©(xG) = 0 and xG is the only such vertex. After deleting the vertex x the 
graph ^falls apart into two parts. The component containing xG is mapped identically 
onto itself and the rest is isomorphic to &\{xG} and is mapped onto itself as well. 
So Aut(^\{x}) .= G. • 

4. Topological version of the main theorem 

The main goal of this section is to prove the following. 

Theorem 4.1. For every group G there is a metrizable topological space X having 
no nontrivial autohomeomorphism such that VxeX Aut(X\{x})= G. 

In 2. Preliminaries we have shown that the autohomeomorphism groups of 
complements of points in a subcontinuum of a Cook continuum are trivial. This 
fact solves the problem for G trivial and will be of use later on. As in the previous 
section we shall prove the following proposition first: 

Lemma 4.2. For every group G there is a metrizable topological space XG with 
a distinguished point xG such that 

1. Aut(XG) s {1} 
2. Aut(XG\{^}) s G 
3. Vj; e XG9 y 4= xG : Aut(XG\{y})^ {l}. 

Let {A,•: i = 1, 2, ...} u {B} be a pairwise disjoint collection of nondegenerate 
subcontinua of a Cook continuum %>. Multiplying their metrics inherited from # by 
a suitable constant we may suppose that 

diam (2?) = 1 and diam (,4,) = 2"1 for i = 1, 2, ... 
For every i we choose two points a?, a\ e At such that p(a®, a\) = diam (A,) and fe°, 
bleB such that p(b°, bl) = diam(B) = 1. 
A metric space U is obtained from the coproduct (g) At by the identification 

i=l ,2, . . . 

a\ with a?+1 for all i = 1, 2, ... Let us consider all spaces 4̂, to be contained in 
1/as subspaces and ./lt- n Ai+l = {a\} = {#?+ J.The coproduct and the identification 
is made in Metr — the category of all metric spaces of the diameter not exceeding 
1 and nonexpanding mappings (The factorisation differs in general from that made 
in Top). 
Denote by D the completion of U obtained from U by adding one point, say u. 

Claim 4.3. Aut(U) s {1}. 

Proof. It is sufficient to prove that 
Vf e {1, 2, ...} Vf: Ax —• U continuous: f is either a constant or the inclusion. 

PutP = {$:k= 1, 2, . . .}u A, 
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First we shall show that f is constant whenever f[-4,] intersects CAP. Let us suppose 
that f[A~ n V4= 0 where V= Aj\{c$, a}} for some; 4= i. Obviously if f\A~\ £ V 
then f is constant because A{ and A} are disjoint nondegenerate subcontinua of the 
Cook continuum <€. If y4j\f_1[V] 4= 0, take any component K of f_1[V]. By 
Lemma 2.4 its closure K intersects the boundary of f~ l[V\. So K is a nondegenerate 
subcontinuum of Ax which is mapped onto a nondegenerate subcontinuum of 
Aj which is imposible. We conclude that f is either constant or the inclusion. • . 

Claim 4.4. Aut(V) .= {1}. 

Proof. The proof is analogous to that of the preceeding claim. • 

Let G be a fixed group. Let us take the graph 3ff G\{.Xc} = (T, S), where yfG is 
the graph with the distinguished point xG constructed in the previous section Let 
B be the subcontinuum of the Cook continuum # with diameter equal to 1 we have 
already chosen. b°, bl e B are the points the distance of which is equal to the 
diameter of B. 

Put HG = (x) B^y), where B(Xfy) =• B for all (x, y) e 5. 
{x,y)eS 

Let b(xy), b\Xyy) e B(Xty) be the points corresponding to b°, bl e B. 

Put HG = HG/~, 

where the equivalence ~ is defined as follows: 

Ь(x,У) 
/-</ 7n0 Ь(u,v) iff X = u 

Ь(x,У) 
/-»«/ Ь(u,v) iff У = V 

h° Ь(x,У) 
/-<.v Ь(u,v) iff X = V 

The coproduct and the factorisation are made in Metr again. 

Claim 4.5. HG is a metrizable topological space such that Aut(HG) = G. 

Proof. HG is really a metrizable space because both the coproduct and the 
factorisation were made in Metr. 
In is sufficient to show that HG has the same autohomeomorphism group as the 
graph ^^{XQ}. In order to prove this we shall show that every f:B 
-+ HG continuous and one-to-one mapping is the only existing homeomorphism 
between B and some B(xy). 
Suppose f[B\ £ B(uv) for some (u, v) e S. Then f[B\ = b(u,v) and f is the 
homeomorphism since B is a subcontinuum of the Cook continuum. If it's not the 
case there would be some (x, y), (u, v) e S, (x, y) 4= (u, v) such that B(x y) n B(ut) is 
nonempty and contained in f[B\ and for the component K of B(x>y) n B(u v) in 
f[B\ n (B(x>v) u B(ufV)) the following holds true: 

K u (5(X)y)\{Zfx,y), b^y)}) 4= 0 and K n (BM\{tfu,v), b
l
M}) 4= 0 
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But then f~l\K n B{Xty)], f~l\Kn B{uv)] and f~l\K] are nondegenerate subcon-
tinua of B and f~l'\K] = f~l\K n B{Xty)] v f~l\K n B{uv)] which leads to 
contradiction since B is herediterily indecomposable. 
Therefore / fulfils the required conditions and consequently Aut(HG) ^ G. • 

The last claim was an instance of the "arrow construction". Instead of every 
arrow we glued into the graph ^^{XQ} one copy of the continuum B. The glueing 
points were exactly the vertices of the graph. So we may consider Tthe set of all 
vertices of the graph ^^{x^} to be contained in the space HG. 

Construction of XG: Let G be a group. Take the space HG and the spaces U, 
U constructed at the beginning of this section. Consider J to be the set of all the 
points corresponding to the original vertices (a, z, 0) e T For every zeZ (which 
is a subset of T) we have chosen a vertex (xz, z,0)eT (recall the construction of 
the graph 34?G). Assign by K the subset of J containing all the points corresponding 
to these vertices. 

det 

In U we have one distinguished point, namely a\ = u° and in U two distinguished 
def def 

points: a? = 0° and u = u1. 
Put XG = HG (x) (X) Ux (g) (X) Ux (x) {xG}, 

xeAK XEK 

where UX=U for all x e J\K and UX=U for all x e K and xG is a new point. 
Finally XG = XG/~, 
where the equivalence relation ~ is defined as follows: 

Vx e J\K x ~ ux where u°x e Ux 

Vx e K x ~ ifx where ifxeUx 

Vx e K u\ ~ xG 

Let us remark that we work in Metr again. 

Let us now state some useful claims concerning the space XG. Their proofs are 
easy and similar to that of Claim 4.5 so they are left to the reader. 

Claim 4.6. Every f:U-> XG continuous one-to-one mapping is the canonical 
embedding of some Ux, where xe K. 

Claim 4.7. Every f : U —• XG continuous one-to-one mapping is the canonical 
embedding of some Ux, where x e J\K, or f\U] cz Ux for some xe K and f is 
the unique such one-to-one mapping. 

Claim 4.8. Every f : B -> XG continuous one-to-one mapping is the only existing 
homeomorphism between B and some B{Xf},y 

Proof of Lemma 4.2. Let an arbitrary group G be given, 
a) Let g : XG -> XG be an autohomeomorphism. g(xG) = xG holds true due to 
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Claim 4.6. So g(x) = x' for x, x' e K. As a consequence of Claim 4.8 we obtain 
that g(HG) a HG and nothing else is mapped into HG • Thus g [ HG is an 
autohomeomorphism of HG. From the proof of Claim 4.5 we know that every 
autohomeomorphism of HG respects the original vertices and that no autohomeo
morphism can send x to x' for x #= x'. So g(x) = x for every xeT and consequently 
g [ HG = id//c. We can conclude that due to Claim 4.7 g = id^c. 
b) Let g be an autohomeomorphism of X^^}. It is easy to verify that g [ HG is 
an autohomeomorphism of HG • Every autohomeomorphism of HG uniquely 
determines an autohomeomorphism of XG\{.xG}. So the autohomeomorphisms of 
-XGH^G} are essentially the same as the autohomeomorphisms of HG. Using Claim 
4.5 we can conclude that Aut(XG\{;%}) i= G. 
c) Let y e XG, y + xG and g : XG\{j;} -> XG\{j;} be an autohomeomorphism. In 
order to prove that g = id*^} let us make some observation contained in the 
following: 

Claim 4.9. Let y e XG, y 4= xG and letf:B-+ XG\{y]be a continuous one-to-one 
mapping. Then f is the unique embedding of B onto some B^, where (u, v) e S. 

Proof. The proof is easy and therefore left to the reader. • 

Claim 4.10. Let y e XG, y 4= xG and let Ak be one of the subcontinua of the 
Cook continuum from which the space U was constructed. Then every continuous 
one-to-one mapping f : Ak -* XG\{y} is the canonical embedding of Ak into some 
Ux or Ox. 

Proof. This proof is left to the reader as well. • 

Let us return to the proof of Lemma 4.2. Using Claim 4.10 we obtain that 
Q(XG) = *G- D u e t 0 the Claims we presented it is sufficient to restrict our attention 
to the original vertices. 
Let y e XG\{XQ] and y =t= T Following the proof of Lemma 3.2 and using the facts 
we already know we easily achieve that g [ T = idr. Then having proved Claim 
4.10, Claim 4.9 and Claim 2.5 we can conclude that g = idXc. 
The situation is analogous for y e T In this case we shall consider T\{y}.Claim 4.9 
assures that g [ (T\{y})respects the graph structure on T\{y}.So the only thing that 
has to be verified is that Vx e K g(x) = x. To prove this remember how the graph 
Jf G was constructed. • 

Proof of Theorem 4.1. Let an arbitrary group G be given. Consider the space 
00 

XG from Lemma 4.2. Put I = \J "(X^x^]). Take for every fe I one copy of the 
n = 0 

space XG (say Xf
G). 

Put X= ®XG, 
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X = X/~9 

where ~ is derfined as follows: Vf, gel such that g = f^{y}: yf ~ x% . 
The factorisation and the coproduct are made in the category Metr. 

By an induction it can be verified that the space X is rigid with respect to 
automorphisms. We use the act that B (Ak resp.) can be mapped into X just onto 
a copy of itself. So every autohomeomorphism sends x% onto x% and hence the 
whole of X% onto itself and so on. 
Aut (Jt\{^}) = G holds since autohomeomorphisms of X\{^} are in one-to-one 
correspondence with the autohomeomorphisms of X^^} a n d Aut^G^^}) = G. 
Let x e X, x 4= x% and g: X\{x} -> X\{x} be an autohomeomorphism. Then 
g(x%) = x% using standard arguments. After deleting x the space X falls apart into 
two parts. The component containing x% is mapped identically onto itself and the 
rest is isomorphic to ^{.x^} and is mapped onto itself as well. 
SoAut(.X\{x})^ G. • 
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