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A Note on ./-Ultrafilters and P-Points 

JANA FLAŠKOVÁ 

Plzeň 

Received 15. March 2007 

We consider the question whether P-points can be characterized as .^-ultrafilters for 
J an ideal on co and show that (consistently) it is not possible if J is an Fff-ideal or 
a P-ideal. 

1. Introduction 

Definition 1.1 (Baumgartner [2]). Let i b e a family of subsets of a set X such 
that J contains all singletons and is closed under subsets. An ultrafilter °U e co* is 
called an J>-ultrafilter if for any F :co -* X there is A e % such that F \A\ e J'. 

Several classes of ./-ultrafilters for X = 2W were defined by Baumgartner [2], 
e.g. discrete or nowhere dense ultrafilters, and some other classes were defined by 
Brendle [4] and Barney [1]. All those ultrafilters exist under some additional 
set-theoretic assumptions, but they cannot be constructed in ZFC because they are 
nowhere dense ultrafilters and Shelah proved in [10] that it is consistent with ZFC 
that there are no nowhere dense ultrafilters. For X = co\ ordinal ultrafilters were 
introduced by Baumgartner [2] as ^-ultrafilters for J = {A ^ co\ : order type of 
A < a} for some indecomposable ordinal oc < a>\. 

In this paper, we consider ./-ultrafilters for X = co and the situation is slightly 
different here since ^-ultrafilters exist in ZFC for some particular families J (see 
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Proposition 2.1). Though most of the results in the paper remain consistency 
results. 

Throughout the article we assume that the family J is an ideal on co which 
contains all finite subsets of co. We can do this without loss of generality because 
if we replace an arbitrary family J in the definition of ./-ultrafilter by the ideal 
generated by J, we get the same concept (first noticed in [1]). 

An ideal J .= SP (co) is called tall if every A$J contains an infinite subset that 
belongs to the ideal J. (Some authors call ideals with this property dense.) 

For A, B ^ co we say that A is almost contained in B and we write A _= * B if 
A\B is finite. Let us also recall that an ideal J is called a P-ideal if whenever 
An e J, n e co, then there is A e J such that An =* A for every n. 

As additional set-theoretic assumptions we will use two instances of Martin's 
Axiom — Martin's Axiom for countable posets and Martin's Axiom for a-centered 
posets which is equivalent to the assumption p = c. Let us recall that the 
pseudointersection number p is defined by: 

p = min {\^\: & _= [co]03 centered, ~i (3A e [co]w)(VF e&)A=*F) 

2. The existence of ^-ultrafilters 

For some ideals on co the existence of ./-ultrafilters can be established in ZFC 
in contrast to the above mentioned result of Shelah. We shall recall that the 
character of J, x (J), is the minimal cardinality of a base for J, i.e. 

X(J) = min {\&\: @ <= J A (VI G J)(3B e ®) I =* B}. 

Proposition 2.1. If J is a maximal ideal on co such that x(^) — c then 
J-ultrafilters exist. 

Proof. It is an immediate consequence of Theorem in [5]. • 

There are of course many interesting ideals on co to which we cannot apply 
Proposition 2.1. It seems that in general some additional set-theoretic assumptions 
are again necessary to construct the corresponding ./-ultrafilters. The next 
proposition states that for some ideals there are no ^-ultrafilters at all. 

Proposition 2.2. If J is not tall then J-ultrafilters do not exist. 

Proof Suppose that for A e [coj^J we have J r\SP(A) = [A]<to and let 
eA : c0 -• A be an increasing enumeration of the set A. 

Now assume for the contrary that there exists an ^/-ultrafilter % e co*. According 
to the definition of an ./-ultrafilter there exists U e°U such that eA [[/] e J. Since 
eA [C7] ^ A the set eA [£/] is finite. It follows that U is finite because eA is 
one-to-one — a contradiction to the assumption that °U is a free ultrafilter. • 
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It turns out that under Martin's Axiom for cr-centered posets the necessary 
condition from Proposition 2.2 is also sufficient. 

Proposition 2.3. (p = c) If J is tall then J-ultrafilters exist. 

Proof. Enumerate all functions from co to co as {f,: a < c}. By transfinite 
induction on a < c we will construct filter bases Fa satisfying: 

(i) FQ is the Frechet filter 
(ii) J*. _= J^ whenever a < ft 

(iii) ^ = U«<r^a for 7 l i m i t 

(iv) (Va) m < |a| • co 
(v) (Va)(3FG^a + 1) fa[F]e^ 

Suppose we already know 3F±. If there is a set F G ^ such that fa [F] e J then 
put 2F*+\ = lFa. Hence we may assume that fa[P] $J, in particular fa[P] is 
infinite, for every F e ^ . 

Since | ^ | < c = p there exists Me [co]™ such that M :=*fa[F] for every 
F e ^ a . The ideal J is tall, so there is A e J which is an infinite subset of M, 
hence A c*fa[F], in particular fa

_1[-4] n F is infinite for every Fe«fa. It 
follows that /a

_ 1 [-4] is compatible with SF^. To complete the induction step let 
3F^+\ be the filter base generated by ^ and f~l [A]. 

It is easy to see that every ultrafilter that extends the filter base & = ( J a < c ^ 
is an ./-ultrafilter. • 

3. ./-ultrafilters and P-points 

A free ultrafilter °U is called a P-point if for all partitions of co, {P* :ieco}, either 
for some i, Rt e %, or (31/ e < )̂(Vi e co) \U n Rt\ < co. 

There exist two characterizations of P-points as ./-ultrafilters: If X = 2° then 
P-points are precisely the ./-ultrafilters for the family J consisting of all finite 
and converging sequences; if X = co{ then P-points are precisely the ./-ultrafilters 
for J = [A _= a>i: A has order type < co} (see [2]). 

Is there an ideal J := SP (co) such that P-points are precisely the ./-ultrafilters? 
In the next two propositions we prove (under additional set-theoretic assumptions) 
that such an ideal can be neither an F^-ideal nor a P-ideal. 

The following description of F<--ideals is due to Mazur [9]: For every Fff-ideal 
J there exists a lower semicontinuous submeasure cp : 0>(co) -* [0, oo] such that 
J = Fin (cp) = {A ^ co: cp (A) < oo}. Remember that a submeasure cp is called 
lower semicontinuous (Isc in short) if cp(A) = limcp(A n n). 

Theorem 3.1. (M^4ctble) For every Fa-ideal J c 0>(co) there exists a P-point 
that is not an J-ultrafilter. 

Proof. Let cp be the lsc submeasure for which J = Fin(cp). Enumerate all 
partitions of co (into infinite sets) as {^?a: a < c}. By transfinite induction on a < c 
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we will construct filter bases J^, a < c, so that the following conditions are 
satisfied: 

(i) J^ is the Frechet filter 
(ii) J^ =• - ^ whenever a < /} 

(iii) ^ = (J a < r e^ a for y limit 
(iv) (Va)|JFa|<|a|-a; 
(v) (Va)(VFe^)<p(F) = oo 

(vi) (Va)(3F e J^a+1) either (3P e0t^)F = R 
or (VI? e #a) |F n P| < cy 

Assume we already know ^ and we should define J^+ i . 

Case A. (3P e ^a)(VF e^cp(F nR)= oo 
Let J^+1 be the filter base generated by J^ and such a set R. 

Case B. (VP G ^a)(3F e ^)(p(F n R) < oo 
Enumerate ^?a as {Rn'.neco}. The assumption of Case B. implies that 

(VK e [©]<") (3FK e JFa) cp(FK n [JneKRn) < oo. 
Consider P = {<K,w> e [co]<(° x co: K c ( J ^ P , , K n P„ # 0} and define 

order < p by <K,n> <P(L,m} if <K,n> = (L,m} or K => L, min(KAL) > 
> maxL,n > m and (K\I-) n (J,<mP/ = 0. Obviously, (P, <p) is a countable 
poset. Now, for F e J^ and fcj e co define I)Ffc = {{K,n} e P : cp(K n F) > k) 
and Dj = {<K,n> eP:n>j}. 

Claim: DFk is dense in (P, < P) for every F e J^ and keco; Dj is dense in 
(P, < P) for every j e co. 

Proof of the claim. Consider (L,m} e P arbitrary. Since L is finite there 
exists p > m such that [0,maxL] ^ Ji<pP , . According to the assumption 
there is Fpe^a such that cp(Fpn (Ji<pP/) < oo. It follows that cp((FpnF)\ 
\(J,<pI?.) = °°- We c a n choose a finite set L _= (Fp n F)\(JI<pI?l such that 
cp(L) > k because cp is lower semicontinuous. Let n = max {i: L n Rt =£ 0} and 
K = L u L. Note that the choice of p implies min L > max L. It follows 
that <K,w><P<L.m> and <K,ft> e DFk. So DFk is dense. For j<m we 
have <L, m> G D, and for any j > m we can choose arbitrary r G P, such that 
r > max L. Let K' = L\J {r}. Of course, <i^j) <R <I-,m> and <K,'I> eD;-. So 
D, is dense. • 

The family ^ = {DFk: F e JFa,keco}v {Dj'.j e co} consists of dense subsets in P 
and |®| < c. Therefore there is a ^-generic filter ^. Let [/ = (J {K: (3rz) <K, n> G ^ } . 
It remains to check that: 

• ( V F G « f > ( [ / n F ) = oo 
Take keco arbitrary. For every <K,n> e^ n DFk we have U ^ K and k < 
< cp(K n F) < cp(U n F) (submeasure cp is monotone). Hence cp(U n F) = oo. 

• (VPnG^a) |C/nPJ < co 
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Fix <KM,jM> 6 ^ n Dn. Observe that jn > n and for <K,m> G ^ we have 
K n Rn = 0 if m < n and that K n Rn = Kn n Rn if m > n. To see the latter 
consider (L,m'} e $ such that (L,m'} <P <K,m> and (L,m'} <P <Kn,j„> (such 
a condition exists because ^ is a filter) for which we get L n Rn = K n Rn and 
L n Rn = Kn n Rn. It follows that U n Rn = Knn Rn is finite. 

To complete the induction step let J^+1 be the filter base generated by J^ and 
the set U. 

It follows from condition (vi) that every ultrafilter which extends the filter base 
&* ~ U«<c^a *s a -°-P°1nt- Because of condition (v) there exists an ultrafilter 
extending #" which extends also the dual filter to Fin (cp) = . / , in particular it is 
not an ./-ultrafilter. • 

Theorem 3.2. (p = c) If J is a tall P-ideal on co then there is an J-ultrafilter 
that is not a P-point. 

Proof. It was proved in Proposition 2.3 that assuming p = c there exist 
./-ultrafilters for every tall ideal J'. We will show that if J> is a tall P-ideal then 
the square of an ./-ultrafilter is again an ./-ultrafilter and it is not a P-point. 

So let us first recall the definition of the product of ultrafilters (see [6]): If °ll and 
TT are ultrafilters on co then % • if = {A <~\ co x co:{n: {m: <rc,m> e A}eir}e°l/} 
is an ultrafilter on co x co which is isomorphic to (and can be identified with) an 
ultrafilter on co. By the square of ultrafilter °U we mean the ultrafilter % • °U. 

Notice that the partition {{n} x co : n e co} of co x co witnesses the fact that no 
product of free ultrafilters on co is a P-point. Hence to complete the proof it 
remains to check that if °U is an ./-ultrafilter then °U • ^U is again an ./-ultrafilter, 
i.e. for every / : co x co -> co there is U e °ll • °U such that / [[/] e J. 

To this end define for arbitrary function / : co x co -> co and for every n e co 
a function /„: co -> co by fn(m) = /(<rz,m>). If % is an ./-ultrafilter then there 
exists Vne °U such that fn\Vn\\eJ for every n. Now we can find a set A e J such 
that fn [ Kj = * -4 for every n because J is P-ideal. It is obvious that f~l [fn [ VnJ] e °U 
for every neco. Hence either f~l [/„ \Vn\\ n A~\ or f~l [/„ [Kj\-4] belongs to °U. 
Let /0 = {nGc0 : /n-1[ /M[Fn]n^]G^} and /-. = {neco:f~l [/n[Vn]\-4] eW}. 
Since <% is an ultrafilter it contains one of the sets I0, Ix. 

Case A. I0e9l 
Put U = {{n} x f-1 [fn \Vn~\ nA~]:ne I0}. It is easy to see that U e °U • ^ and 

/ [ f ] = Une/o/nran^^^te^. 
Case B. I{e^ 
Since /„[J^]\-4 is finite and °U is an ultrafilter, there exists knefn\Vn~\\A such 

that f-1 {1^} e °ll for every nelx. Fix arbitrary g :co -> co such that g (n) = kn for 
each rieJ!. Since °U is an ./-ultrafilter there exists Ve<% such that g[V] G . / . 
Now put 17 = {{n} x /n

_1 {A„}: n G J! n V}. It is easy to check that U e Ql • ^ and 
/ [ l / ] c = g [ V ] G t / . n 
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For ideals which are neither (analytic) P-ideals nor F^-ideals there is no 'nice' 
description. So it is rather difficult to prove any general statements about 
^/-ultrafilters and P-points in this case. We will conclude by one example of such 
an ideal and show that it cannot be used to characterize P-points via the 
corresponding ./-ultrafilters. 

Definition 3.3. A set A e [co]™ with an (increasing) enumeration A = {fl„:neN} 
is called thin (see [3]) if lim^^a^i = 0. 

Obviously, thin sets do not form an ideal (consider for example the sets 
{n\:ne co) and {n\ + \:ne co}), but they generate an ideal which we denote by 
F. We refer to ^-ultrafilters as thin ultrafilters. Borel complexity of the ideal F is 
Faoa since 3T = \jrsN{^k£N\JmGN[\n>m{A c co: ̂  < [} and the ideal ST is not 
a P-ideal (if Ak = {n\ + k:ne co) then there is no set A e 2T such that Ak =* A 
for each keco). Thus Theorems 3.1 and 3.2 do not apply to thin ultrafilters. 
However, assuming Martin's Axiom for countable posets it is possible to prove 
that there is no inclusion between thin ultrafilters and P-points. 

Theorem 3.4. (M>lctble) 
(1) There exists a P-point that is not a thin ultrafilter. 
(2) There exists a thin ultrafilter that is not a P-point. 

Proof The ideal generated by thin sets is contained in the P^-ideal / l n = 
= {A ^ M '-YjneAn < °°}. Statement (1) follows from the obvious fact that for 
J =" f every ./-ultrafilter is a ^/-ultrafilter and from Theorem 3.1. 

As for (2), a thin ultrafilter which is not a P-point was constructed in [8] 
assuming Martin's Axiom for countable posets (published in [7] as Proposition 
4 assuming Continuum Hypothesis). • 
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