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It is proved that if L is a c-Luzin set then assuming MA + negation of CH the c-field 
^Lof Borel subsets of L contains a nonatomic <7-fie1d separating points. Other properties 
of $L are also considered. 

If X is a set then \X\ denotes then cardinality of X, $P (X) is the power set of 
X, c = 2X°, R is the real line. For a cardinal K9 [ X ] - K = {Y~\ X: \Y\ < K}9 

analogously for [X]<K:. We say that a family 3F of sets satisfies ccc (countable 
chain condition) if there are no uncountably many pairwise disjoint sets in 3F. 
A (7-field of subsets of a set X will be called, shortly, a c-field on X. CH denotes 
Continuum Hypothesis, MA denotes Martin's Axiom. Let si be a cr-field on a set 
T If X is an arbitrary subset of T then six denotes the cr-field {An X : Ae si} 
on X. si is called separable if it is countably generated and contains all singletons. 
The (7-field of Borel subsets of IR is denoted by 38. If si is generated by a sequence 
of sets A\,Ai9... then let h: T-> IR be a function defined for every xeT by 
f (x) = Yf-11 KA, (X) where KA> (X) = 1 if x e Ax or KA> (X) = 0 if x <£ At. For such 
a function called Marczewski function (e.g. in [1]), h~l: 3Sh(r) -• si is an 
isomorphism [9]. Here h~l (B) = {xe T: h(x) e B} for every B e @h(T). 

Recall that a Luzin set is an uncountable subset L of IR such that \L n K\ ^ Ko 
for every K ~\ R which is of the first category. Recall also that c-Luzin set is 
a subset of IR such that \L\ = c and \Ln K\ < c for every K ~\ R which is of the 
first category. If we replace the first category sets by Lebesgue null sets in the 
above definitions, we obtain Sierpiriski or c-Sierpinski sets respectively. Assuming 
CH both Luzin and Sierpinski sets exist. If we assume MA then again c-Luzin and 
c-Sierpinski sets exist (see [6] or [7] and references there). A set of reals X is 
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a Q-set if every subset of X is relative Ga. Assuming MA every set of reals of 
cardinality less then the continuum is a Q-set (see [6] or [8]) and hence for X ^ R 
with \X\ < c we have &x = 0>{X). A cx-field si on T is said nonatomic (or 
atomless e.g. in [1]) if it has no atoms. Recall that A e si is an atom of si if it 
does not contain properly any nonempty set from si. 

Let SF be a family of subsets of a set T Say that J* is cx-independent family if 
for any countable distinct (finite or infinite) sequence of sets (Fx\i ^ 1> from 
F we have f]i>{ Ff # 0 where 8t = 0 or 1 and Ff = Ft and F/ = T\F, for all i. 

We say that a family si of subsets of a set T contains fc-many cI-independent 
sets if there is a ex-independent family 3F <^ si with \SF\ = K. 

It was observed by Marzcewski that in 38c where C is the Cantor set there are 
c many cr-independent sets [5]. Hence using Marczewski function it is clear that if 
<7-field si contains infinitely many cj-independent sets then si contains c many 
ex-independent sets (see [1]). Observe that if 3F is an uncountable cr-independent 
family then each set of the form f^i-F-1 which appears in the definition has 
cardinality at least c. Hence if we modify each set in 3F by a set of cardinality less 
then c then such a new family is still cr-independent if we assume \$F\ > K0 (recall 
that the cofinality of c is by Konig's lemma strictly bigger then K0). We need the 
following 

Proposition 1. (Compare [1]). If si is a separable o-field on X which contains 
infinitely many o-independent sets then si contains ^-independent sets separating 
points. If additionally \X\<C <= si then we can find in si c many o-independent 
sets separating sets from \X\<C. 

Proof We prove only the second part of the proposition since the first part is 
similar to the second one and can be found in [1], Observe then if [X]< c ^ si 
then |[X]<C| ^ \s/\ ^ c. Let 3F be a family of cj-independent sets such that 
y c si and \&\ = c. Let / be a function from & onto [X]< c x [X]<c. Let 
/ = </i,/2>. Define ? = {(Fu / (F)) -f2(F):Fe 3F). Then ^ is cj-independent 
family as required. • 

It is clear a cr-field generated by uncountable cx-independent family of sets is 
nonatomic. Hence Propositionn 2 holds. 

Proposition 2. (Compare [1]). If a separable o-field si on X contains infinitely 
many o-independent sets then si contains a nonatomic o-field %> which separates 
points. If additionally [ ^ ] < c -̂  si then we can find such %? which separates sets 
from [X]<c. 

In [1] K.P.S. Bhaskara Rao and B.V. Rao have given an example of a separable 
(7-field i on a set X of cardinality ^ which contains a nonatomic cr-field 
separating points. Then assuming ~~iCH they obtain that si does not contain 
infinitely many cr-independent sets, because of course on any set of cardinality less 
then c there are no infinitely many cr-independent sets. Their proof works for all 
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uncountable X with |X| < c if we assume MA + ~~I CH using known consequen
ces of MA. Assuming also MA + ~~iCH for X of cardinality c such a a-field is 
obtained in Theorem (3) and (5) of the present note. 

In the present note we prove that the sentence 

(*}c) There is a c-Luzin set such that $L does not contain a nonatomic a-field 

is independent from ZFC + c = K2. 
First recall that it is consistent with ZFC + c = K2 that there is a c-Luzin set 

L which is a Luzin set [3]. For such L(*) is true. Motivated by a problem of K.P.S. 
Bhaskara Rao and B.V. Rao (P9 in [1]) I observed that the cr-field of Borel subsets 
of a Luzin set does not contain a nonatomic cr-field (see [1]). To prove this 
I remarked that ^ \ [L ] < X ° satisfies ccc. A proof of this observation is very similar 
to the proof of Theorem (1) in the present note. Our Theorem (3) shows that MA 
+ c = K2 implies that (*) is not true. 

Theorem. Let Lbe a c-Luzin set. Then 
(1) 08L\\L\<C satisfies ccc; 
(2) If MA + —iCH then [L]< c c: ab-
(3) If MA + ~~iCH then there is a nonatomic a-field stf on L such that si <= $L 

and si separates points of L; 
(4) If m is a nonatomic o-field on L and^^ 3SLthen there is a nonempty C e ^ 

with | C| < c and hence %> does not separate sets from \L\<C; 
(5) 88L does not contain infinitely many a-independent sets. 

Proof of (1). Let ^ ~: ^ L \ [L] < C be a family of pairwise disjoint sets. From the 
definition of L it follows that each set in & is of the second Baire category on R and 
hence on L. Consider L as a metric space. A set F is of the first category in a point 
x e L if there is an open subset G of L such that xe G and G n F is of the first 
Baire category on L. For every F e ^ let GF = Int(DF) where DF is the set of all 
points of L in which F is not of the first category. Then (GF: F e ^} is a family 
of pairwise disjoint [4] nonempty open subsets of Land hence 2F is countable. • 

Proof of (2). First observe the following 

Lemma 1. Assume MA + —iCH. Let Y ^ X = R, \Y[ < c and Ye @x. Then 
0>(Y) <^0&x. 

Indeed. We have 0>(Y) = &Y = (@X)Y c: ^ x . Let Ae [L]<c . By a known 
consequence of MA ([6] or [8]) A is the first category on U. Let Ax be a first 
category FG set on IR such that A c= Ax. We have Ax n Le fflL and \Ay n L\ < c. 
Apply Lemma for Y = Ax n L, X = L. From Lemma it follows 
0>(AX nL) c &h Since A c: Ax n L it follows A e 38L. • 

Proof of (3). Let <Xa>a<c be a family of pairwise disjoint sets such that 
L= Ua<t^a and for every a < c, |Za| = K^ For every a < c let s/x be 

51 



a nonatomic cr-field on Xa separating points of Xa. On arbitrary uncountable set 
there is such a cr-field as was proved in ZFC in [1]. Let st be the cI-field on 
L generated by [j0[<cst0L. It is evident that st is a nonatomic a-field on L 
separating points, which is contained in 38L because sta^ 3P (Xa) ^ 38L. • 

Proof of (4). If CH then 3SL does not contain any nonatomic a-field. Assume 
~~iCH. Since <& is nonatomic there are uncountably many pairwise disjoint 
uncountable sets in ^ (see e.g. [1]). Assume a contrario that each nonempty set 
C e ^ has cardinality c. Hence 3SL\\_L]<C does not satisfy ccc. This is a contradic
tion with Theorem (1). Let C e # be nonempty and such that \C\ < c. If 
^ separated sets from 3P (C) then # c would be equal to 3P (C). But # c is nonatomic. 
A contradiction. • 

Proof of (5). If a cr-field ^ on X contains infinitely many cr-independent sets 
then ^ \ [ X ] < C contains c many pairwise disjoint sets. In particular ^ \ [ X ] < C does 
not satisfy ccc. • 

Remark that in our Theorem instead of c-Luzin we can take a c-Sierpinski set. 
In connection with Theorem (2) we have 

Proposition 3. It is consistent that c = K2 and there is a c-Luzin set L such 
that [L]< X l £ 3SL. 

In fact [L]^X l $£ 3ftL for every Luzin set L. 

Proof Kunen in [3] has proved that it is consistent that c = K2 and there is 
Luzin set L with \L\ = c. Of course such L is also a c-Luzin set. Since L is Luzin 
set ^L\[L]^N° satisfies ccc. The proof is similar to the proof of Theorem (1). Let 
3F be an uncountable family of pairwise disjoint subsets of L such that each set in 
3F has cardinality K^ Then only countably many sets from 3F can belong to 3ftL. 
Hence J^ £ 3ft L. • 

Remark. Assume MA + —iCH. Let X c R, \X\ = c and suppose 3SX\\X\<C 

satisfies ccc. It easily follows from a result of Fremlin and Jasinski (see 4C 
Corollary on p. 527 in [2]) that [X]^N l c 3ftx. Hence our Theorem (1), (3), (4) 
and (5) is true if we replace L by the above X. The proofs are the same as for L. 

I wish to thank the referee for improvement of the style and language of the 
paper. 
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