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Theorem on Signatures 
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Katowice, Slippery Rock 

Received 15. March 2007 

A theorem on signatures presented in this paper generalizes and gives direct proofs for 
many celebrated theorems due to Brouwer, Kakutani, Nash, Gale, Nikaido and Shapley. 

1. Introduction 

The main result of this paper is a theorem called here as a theorem on signatures. 
As app ications we derive some well-known results related to fixed points and 
equilibria theorems. We extend the classical results onto a class of simplicial 
spaces being a generalization of convex sets. In 1973 Maynard Smith and Price 
[13] introduced a concept of evolutionarily stable strategy (ESS) which became 
a fundamental notion of modern evolutionarily biology and genetic. The area of 
research of ESS was culminated in John Maynard Smith book [12]. The theory 
of ESS leads to testable predictions about the evolution of behaviour of sex and 
genetic systems. According to Maynard Smith ESS is a strategy such that, if all 
numbers of a population adopt it, then no mutant strategy could invade the 
population under the influence of natural selection. In this paper we shall 
investigate ESS from a topological point of view. 
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Let {po,...,pn} c Rm be a collection of linearly independent points of the 
m-dimensional Euclidean space Rm. The ^-dimensional geometric simplex 
[p0,pi,..., pn~\ with vertices p0,pi,..., pn is the subspace of Rm given by 

f n n ) 
\xeRm:x = £Upu U > 0 for each i = 0,..., n, and £ ft = 1 \. 
I i=0 i=0 J 

If {p,0,... ,p,J is a subcollection of k + 1 points of the collection {p0,... ,p„}, then 
the simplex [pIO,... ,p,fc] is said to be a k-dimensional face of the simplex [po,... ,p„]. 

A continuous map / : [po,..., p«] -• £ into linear space E is said to be affine if 
fQj-ottPi) = If-ottffa), where ft > 0 and £?=0f. = 1. 

A continuous map o : [po,..., p„] -> -Y is said to be a singular simplex in X. Let 
us denote vert o := {cr(p0),..., <j(p„)} and im o := o([p0,..., pn~]), 

A collection S of singular simplices in X is said to be a simplicial structure on 
Zif; 

(a) For any finite sequence x0,..., xn of (not necessarily distinct) points of the 
space X there exists a. o e S, o: [po,..., pn] -> X such that cr(p0) = xo,..., <r(pn) = 
= xn. 

(b) If cr G S, then any restriction to any face of the domain of o belongs to S. 
(c) If /: [go,..., qn~\ -> [po,...,p«] is affine map such that l(qt) = p„ for each 

i < n, then for each oeS,o: [p0,..., p„] -• X, the composition o o / belongs to S. 
A topological space X together with a simplicial structure 5 on X is going be 

referred to as simplicial space (X, S). A subset A a X of a simplicial space (X, S) 
is said to be simplicially convex if for each simplex o e S, vert o cz A implies 
im o a A. 

It is tacitly assumed (unless otherwise stated) that each convex subset X of 
linear (= vector) topological space over R is a simplicial space with a simplicial 
structure consisting of all affine maps. 

The following theorem [9] is our main tool in the proof of Theorem on 
Signatures. We reprove it here for the reader's convenience. 

Theorem 1. (Theorem on Indexed Families). Let o : [p0,..., p„] -• X be a con
tinuous function. For any covering {Uo,..., Un} of the subspace o ([po,..., p«]) by 
non-empty open subsets of X there exists a non-empty subset of indices 
{i,..., ik} c {0,..., n} such that o ([p.0,..., P.J) n Uio n ... n Uik # 0. 

Proof. For i = 0,1,..., n, let dt be a function on the simplex [p0,..., p„] given by 

d,(x) = d(x,[p0,...,pn~]\o-1 (Ut)), 

where d(x, Y) = inf {||x — y\\ : y e Y} is the distance between the point x and the 
subset Y in Rm. Each of the functions d, is continuous and since the sets o~l(Ut) 
are open, 

dt(x) = 0 if and only if x <£ cr"1 (I/,). 
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The function / given by 

is a continuous function defined on the simplex [po>•••>£>.] into [po?--->P«]-
According to the Brouwer Fixed Point Theorem, there exists a e [p09...9 p„] such 
that f(a) = a. Thus 

Let {-o,..., ik} be the set of all indices i such that 

di (a) ^ . x 

From (1), a e [pIO,..., A J- From (2), 

i e {io,..., ifc} if and only if a e C/-1 (I/.-). 

Subsequently, 

o(a) e <x([pI0,..., pik]) n Uio n ... n Uik. D 

2. Theorem on Signatures 

A function ju: X x Y -> [0, oo) is said to be quasi-simplicially convex with 
respect to the first variable x e X if for each j / e Y and s > 0 the pseudoball 
A(y9s): = := {xGl:/i(x,j;) < e} is simplicially convex. If /i is a nonnegative 
function then it is called a signature. 

The power set of X is denoted by 2*. 
A multivalued map H: X -> 2 r is said to be a multivalued limit map if there 

exists a sequence {h„: X -> y | n e IV} of continuous maps such that for each 
subsequence {nfc} c: IV; 

lim (xnk9hnk(xnk)) = (x9y) implies y e H(x). 

The sequence {h^ n e IV} is said to be basic for H. 
A set-valued map H : X -> 2yis said to be semicontinuous if if-1 (V) = {xe AT: 

: H (x) cz V} is an open set in X provided that V is open in y In the case when 
X and y are compact metric spaces it is equivalent to the fact that the graph 
G (H): = {(x9y) :xe X9 ye H (x)} is closed subset of X x Y. 

Theorem 2. Let (X9d) be a compact metric space and Y convex compact 
subspace of a normed space. If H : X -> 2Y is upper semicontinuous and H (x) 
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is non-empty convex compact set for each x e X, then H is a multivalued limit 
map. 

Proof. Let us denote by B(x,s):= {yeX:d(x,y) < s} and B(A,s): = 
:= [j{B(x,s):xeA}. 

To define a function hn from a sequence that witnesses limit-valuedness of H, 
fix n > 0. Let U (x) be given by 

U(x) = B(X,^) n \yeX:H(y) <= B(H(X),^J}. 

By compactness of X, the open covering {U(x) :xe X} has a finite star-refinement 
{%,..., Kn}, i.e., for each x e X there exists x e l such that (J {Tf: x e V^} cz [/ (x). 

For each i = 1, ..., m let p, be an arbitrary point of the set H(V^): = 
:= \J {H(x): x e V]. We set 

K{x):=UéS^)p" 
where d,(x) = d(x,X\V^). The function hn: X -• Y is continuous. 

For a given xeX, choose xeX is such that (J{Tf:xe Vj} cz L/(x). Then 
p, e B(H (x), ln) whenever xeV{. Since x e Vt if and only if d, (x) 7-= 0, p, eB(H (x, ln)) 
whenever dt(x) ^ 0. Since B(If(x,i)) is convex, hn(x) = Y? o(z/y{*))?» ^ 
e B(H(xJ)). Thus we have proved that for each x there is x such that 

llx — xll < - and d(hJx),H(x)) < -
n v v ' v " n 

We shall prove that the sequence {hn: n = 1,2,...} is basic for H. Towards this 
end, assume that limk^00(xnk,hnk(xnk)) = (x,y). We have just showed that for 
each xnk there is xnk such that ||xnfc - x„J < n\ and d (hnk (xnk), H (xnk)) < n\. The 
latter means that there exists ynkeH(xnk) such that \\hnk(xnk) — ynk\\ < n\. Hence 
l i m ^ ^ x ^ j ^ J = (x,y). Since H is upper semi-continuous, y e H(x). • 

Theorem on Signatures. Let be given a family of continuous nonnegative 
functions (signatures) \i:X x Y-> [0, 00), \i e M, from a product of a compact 
metric simplicial space (X, S) and a compact metric space Y such that for each 
finite subset M0 cz M, s > 0 and ye Ythe set 

{xeX : fi(x,y) < s for each \i e M0} 
is nonempty and simplicially convex. 

Then for each multivaluaed limit map H : X -> 2Y there exist a point a e X and 
b e H(a) such that 

\i(a,b) = 0 for each jn e M. 

Proof. First we shall prove the theorem for a continuous map h : X -> Y 
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(I). Fix s > 0 and assume that M is finite. According to assumptions for each 
y e Y, the set A (y) given by 

A(y): = {xe X : fi(x,y) < s for each \i e M} 

is simplicially convex and nonempty. 
By continuity of ju's, the dual sets 

B(x) := {ye Y: fi(x,y) < s for each \i e M} 

are open for each xeX. Observe that 

xe A(y) if and only if y e B(x). 

Since each set A (y) is nonempty we infer that 

Y= \J{B(x):xeX). 

Compactness of h(X) implies that there is a finite set of points x0,..., xne X 
such that 

h(X) cz B(x0)u ... u B(xn). 

Now, choose a singular simplex o e S, a: \p0,..., p„] -»X, such that 
ff(Po) = x0,...,o(pn) = xn. 

According to Theorem on Indexed Families there is a point a e X and a set of 
indices 0 < i0 < ... < ik < n such that 

aeo(\pi0,...,pik~\) n h~l(B(xio)) n ... n h~l(B(xik)). 

Let rj := a \ [p,0,..., p,J. Then rj e S, aeimrj, h(a) e B(xio) n ... n B(xik) and 
hence vert rj = {xi0,..., xifc} <= ̂ 4(/i(a)). Since ^4(/j(a)) is simplicially convex we 
infer that 

ae A(h(a)) 

and this means that 

fi(a,h(a)) < s for each fieM. 

(II). From the above it follows that for each s > 0 the set 

K (s): = {x e X : \i (x, h (x)) < s for each jn e M) 

is nonempty and compact. Therefore there is a point 

aef] {K(s): s > 0} 

and this means that 

fi(a,h(a)) = 0 for each fieM. 

(III). Now assume that M is infinite. For each finite set M0 cz M let 

L(M0): = {xeX : fi(x,h(x)) = 0 for each fie M0. 
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The family 

{L(M0): M0 is finite subset of M} 

is a centered family of nonempty compact sets. It is clear that each point a e X 
belonging to the intersection of this family satisfies for each \i e M the equation 
fi(a,h(a)) = 0. 

(IV). Finally, assume a sequence {/̂ : n e N) is basic for a multivalued limit 
map H : X -> 2Y. For each n e N choose a point ane X satisfying 

\x(an,hn(an)) = 0 for each fieM. 

From compactness of X and Y there are two points a e X and b e Y and 
subsequence {GL,J such that 

lim ank = a and lim hn/c(ank) = b. 
k-too k-too 

By definition of multivalued limit map, b e H (a). 
Continuity of functions ine M implies that 

m(a,b) = 0 for each jieM. 

Remark. In the case when H : X -> Y is a map the assumption that the spaces 
X and Y are metric is superfluous. 

3. Applications 

In this part we are going to present some consequences of the theorem on 
signatures. Another applications the reader will find in [10]. To be near classical 
results we mostly state the theorems in terms of convex sets and continuous 
maps. 

If M = {/i},where fi(x,y) := \\x — y\\ is the metric induced by a norm then we 
obtain Kakutani's theorem [4]. 

Kakutani Theorem. Let H: X -> 2X be an upper semicontinous multivalued 
map from a convex compact subset X of a normed space. 

Then H has a fixed point, i.e., there is an aeX such that a e H(a). 

The above theorem can be extended to 

Brouwer-Schauder-Tichonov-Kakutani Theorem. Let X be a compact metric 
simplicial space and M be a set of continuous functions (signatures) jn: X x X —> 
-> [0, oo) quasi-simplicially convex with respect to the first variable such that; 

1. for each fie M, fi(x,x) = 0, 
2. for each two distinct points x,y e X there is fie M with \i (x, y) > 0. 
Then any multivalued limit map H : X -> 2X has a fixed point. 
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A function / : X -> R from a simplicial space is said to be quasi-concave [resp. 
quasi-convex] if the set {xe X :f(x) > r} [resp. {xeX :f(x) < r}] is simplicially 
convex for each reR. 

A function / : X -» .R from a convex subset of linear space is said to be concave 
[resp. convex] if for each points x,y e X and t e [0,1] the following inequality 
holds f(tx + (1 - t)y) > tf(x) + (1 - t)f(y) [resp. / ( tx + (1 - t)y) < 
< tf(x) + (1 - t)f(y). 

Since many results are stated in terms of concave or affine maps for the reader's 
convenience we shall prove the following. 

Lemma. If a function f: X -> R from a convex subset of linear space is 
concave [convex] then f is quasi-concave [quasi-convex]. 

Proof. Assume that / is concave. Fix reR and let C(r): = {xe X :f(x) > r}. 
Then for each x,ye C(r), z := tx + ((1 — t)y, where t e [0,1] we have; f(z) = 
= f(tx + (1 - t)y) > tf(x) + (1 - t)f(y) > tr + (1 - t)r = r. And this 
means that zeC (r). If / is convex the proof is similar. • 

Let us notice that any monotonic function f:R->R is quasi-concave and 
quasi-convex. This leads to an observation that for example the class of 
quasi-concave functions is larger than the class of concave functions. 

A point a e X is said to be an ESS point (or evolutionary stable strategy) for 
a function / : X x X -> R if f(x,a) < f(a,a) for each xe X. 

Maynard Smith Theorem. Let X be a compact simplicial space and 
f:X x X -> R a continuous map which is quasi-concave with respect to the first 
variable. 

Then f has an ESS point. 

Proof. Let us define fi(x,y):= —f(x,y) + supzeXf(z,y), 
Fix yeX and r > 0. Let s:= supzeXf(z,y). Observe that the pseudoball 

B(y,r):= {xe X : \i(x,y) < r} is simplicially convex because B(y,r) = {xe X : 
:s — r < f (x, y)} and according to the assumption this set is simplicially convex. 
The pseudoball B(y,r) is nonempty because by continuity and compactness for 
each point y there is a point x such that \i (x, y) = 0. 

Applying Theorem on Signatures to the identity map h : X -> X, h (x) = x, we 
infer that there is a point a e X such that p. (a, a) = 0 and therefore we get 
/ (a, a) = supx6A: / ((x, a)). • 

Remark. The Maynard Smith Theorem implies the Brouwer Fixed Point 
Theorem. To see this consider a continuous map g: X -• X, where X is a non
empty compact convex subset of a normed space. According to the Maynard Smith 
Theorem for the map 

f(x,y):= - \x - y\\ 
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there exists a point aeX such that for each xeX; 

f(x,a) <f(a,a). 

Setting x = g(a) we obtain \\a — g(a)\\ = 0, and in consequence, a = g(a). • 

Nash Theorem. Let f:X{ x ... x Xn -> R, i = 1, ... n, be a family of con
tinuous functions from a Cartesian product of compact simplicial spaces and let 
us assume that each function f is quasi-concave with respect to the variable 
xt e Xt. 

Then there exists a point a e Xx x ... x Xn such that for each i < n; 

f(a) = supf(ah...,ai_hx,ai+h...,an). 
xeXt 

Proof. Let X := X{ x ... x Xn and define for each i = 1,..., n; 

fit(x,y):= -f(Nt(x,y)) + sup fi(Nt(z9y))9 
zeX 

where N(: X x X -> X means the Nash projection; 

Ni(x,y):= (yh...9yi-hXi,yi+h...,yn). 

Fix i9yeX and r > 0. Let s:= supxeXf(Ni(x,y)). Since Bt(y,r): = {xeX: 
:fit(x,y) <r} = {xeX:s - r <f(yh...9yi l9xi9yi+l9...,yn)}9 by the assum
ption, we infer that each pseudoball Bt(y,r) is simplicially convex and there
fore the set A(y,r):= {xe X: [it(x,y) < r for each i = l,...,n} is simplicially 
convex. 

It remains to verify that the set A (y, r) is nonempty. By compactness for each 
i < n there is a point a1 e X such that iii(a\y) = 0. Let a = (ah..., an) e X be the 
unique point such that a{ = a\ for each i < n. Since Ni(a\y) = Nt(a,y) it is clear 
that fit(a,y) = 0 for each i < n, and this implies a e A(y,r). 

Applying Theorem on Signatures to the identity map h : X -> X, h (x) = x, we 
infer that there is a point aeX such that 

fii(a,a) = 0 for each i = I,..., n. 

But Nt (a, a) = a and therefore we get 

f(a) = sup f(Ni(x, a)) = sup f(ah...9 at hx,ai+l,...,a) 
xeX xeXt 

for each i = I,..., n. • 

A point aeXx x ... x Xn, a = (ah...,an), is said to be Nash's equilibrium 
point for the family of functions f:X{ x ... x Xn -> R, i = \,...,n, if 
f(ah..., ah,xhai+h..., an) < f(a) for each i < n and x.eX,, 
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It is easy to check that if a e X, X := Xx x ... x Xn, is an ESS point for the 
function / : X x X -> R; 

n 

fix>y):= Z^^i'-'^-i'^'^+i'-'^) 
i 0 

then a is Nash's equilibrium point for the family of functions / ' s . 
In fact, in the proof of Nash Theorem and many others it is convenient to apply 

Infimum Principle [10]; 

Theorem (Infimum Principle). Let g:X x Y-> R, geGy be a family of 
continuous functions and quasi-simplicially convex with respect to the first 
variable xfrom a product of a compact metric simplicial space X and a compact 
metric space Y such that for each finite subcollection G0 <= G and for each point 
y e Y there is a point aeX with 

g(a,y) = inf g(x,y) for each g e G0. 
xeX 

Then for each multivalued limit map H: X -> 2Y there is a point aeX and 
a point be H(a) such that 

g(a,b) = inf g(x,b) for each g e G. 
xeX 

Proof. Define \ig(x,y): = g(x,y) — infxeXg(x,y), M := {^ : g e G} and then 
check that the assumptions of Theorem on Signatures hold. • 

Let A„:= \eu...,en\ where et:= (0,..., ,0,1,0,..., 0), et(j) = 0 for; # i and 
et(i) = 1, denotes the (n — l)-dimensional standard simplex in the space Rn. The 
following theorem plays an important role in a proof of the existence of 
equilibrium points in economic models in the Walras sense (see [16]). 

Gale-Nikaido Theorem. Let H: An -> 2C be an upper semicontinuous map 
from the standard simplex An such that for each x e An, H(x) is nonempty compact 
convex subset of a compact convex set C cz Rn. Suppose further that the Walras 
law in the general sense holds; 

n 

<x,y > := Yaxyi -̂  0 for each x e An and y e H(x). 
i—I 

Then there exist a e An and b e H(a) such that bt > 0 for each i = 1,..., ,n. 

Proof. Applying Infimum Principle to X = An, Y = C, the given set-valued 
map H, the function gx, given by g\(x,y) = < x,y > there is a point 
(a, b)e An x C such that be H(a) and < a,b > = inf { < x, b >: x e An}. By Wal
ras law < a,b > > 0 and in consequence 0 < < a, b > < < x, b > for each 
x e A„. Since et e An, 0 < < et,b > = bx for each i = 1,..., n. • 
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4. Shapley theorem 

In 1929 Knaster, Kuratowski and Mazurkiewicz [5] published a kind of an 
intersection theorem (the KKM theorem), where some conditions are given for 
a closed covering of a simplex has a non-empty intersection. In 1967 Scarf [18] 
proved that any non-transferable utility game whose characteristic function is 
balanced, has a non-empty core. His proof is based on an algorithm which 
approximates fixed points. Shapley [19] replaced the Scarf algorithm by a covering 
theorem (the KKMS theorem) being a generalization of the KKM theorem. 
Therefore the main difficulty to show the nonemptiness of the core lies in proofs 
of the KKMS theorem. Shapley's theorem as an extension of the KKM theorem 
became very useful to prove the existence of solutions in general equilibrium 
theory and game theory. We would like to present Shapley's theorem as a kind of 
a dual theorem on coverings. There are a number of papers (see e.g., [2], [6], [7]) 
containing elementary and simple proofs of the KKMS theorem. The proof which 
is given in this note is a direct consequence of well-known for economists, 
Kakutani's fixed point theorem [4]. 

Let us establish some terminology and notation used by economists. Denote the 
set {1,..., n} by IV and the family of nonempty subsets of IV by Jf. For each point 
xeRn let 

sup x : = {i e IV : x, > 0} and sup x : = {ie IV : x, > 0} 

Denote by A the unit simplex in Rn; 
n 

A : = {x e i?": £ x, = 1 and sup x = IV} 

and for each S e Jf let A5 be an S-face of A; 

As: = {x e A : sup x <= S}. 

The symbol conv A stands for the convex hull of a set A. 
The following theorem is a covering version of the Shapley Theorem. 

Theorem 3. Let {(?: S e Jf} be a family of closed subsets of A such that 
AT <= ( JS C TC S for each Te Jf and let {if :Se Jf\ be a family of points of A such 
that sup ds cz S for each S e Jf. 

Then A = (JxeAconv{cf :xeCs). 

Proof. Let X:= {xeRn: YJ=Ixt = 1 and x, > - 1 for each i < n). 
Define a continuous map (retraction) r: X -> A such that r (x) = x for each 
xe A; 

( x max{0,x,} . 
rAx):= "=~n m \ f o r e a c h l = 1 ' - ' n 

X"=1max{0,x,j 
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Fix a point me A and define a continuous map f: X x A -> X; 
(1) f(x,p):= r(x) + m - p. 
Next, define set-valued maps F : X -> 2A and 0 : X x A -• 2*xA; 
(2) F(x) := conv {<£ :r{x)e Cs and S cz sup x} 
(3) <l>{x,p):={f{x,p)}x F{x). 
Assume that (x,p) is a fixed point of the map </>, i.e., (x,p) e ${x,p). Observe that 
x e A. Indeed, if x <£ A there exists j such that x, < 0. Since j $ sup x and 
sup ds cz S, according to (2), we infer that pj = 0, and from (1) we obtain; 
Xj = f{x,p) = = 0 + m} > 0, a contradiction to x; < 0. 

Since r(x) = x for each x e A, from (1) we obtain; x = f(x,p) = x + m — p, 
and this yields m = p. 

Thus we have proved that if the multivaled map 0 has a fixed point then for 
each point me A there exist a point x e A such that me F (x). 

In order to complete the proof it suffices to verify that the map </> satisfies the 
assumptions of Kakutani's fixed point theorem. It is clear that for each point 
{x,p) e X x A, the set (j){x,p) is non-empty and convex. It remains to show that 
the graph W{4>): = {{z,u): zeX x A, ue 4>(z)} is a closed subset of {X x A)2. 

Assume that (zw, um) -* (z, u) whenever m -• oo, where {zm,um)e W (</>), 
zm = {xm,pm\ um = {f{zm),ym), ymeF{xm), z = {x,p) and u = {f{z),y). 

By continuity of f it follows that zw ->f(z) whenever m -» oo. Now, we are 
reduced to proving that y e F (x). 

For each xeX consider a subset of Jf\ 

B{x) := {S cz N : r{x) e Cs and S cz sup x}. 

The family {B{xm):m = 1,2,...} consists of subsets of the finite set Jf and 
therefore there exists a set B cz Jf and subsequence {m̂ } such that B = B{xmk) 
for each fc. 

Since the sets Cs are closed and S e B (xw) implies S cz sup x, we infer that 
B c B(x) whenever xmk -* x. 

Note that ymk e conv {ds : S e B} = F{xmk). Since ymk -> y whenever k -> oo, we 
infer that y e F (xWfc) = conv {ds : 5 e B} cz conv {ds: 5 e B (x)} = F (x). This 
completes the proof. • 

Statement of KKMS Theorem. For each i < n let e[ e Rn be an n-vector 
whose i-th coordinate is 1 and 0 otherwise. Denote for each 5 e Jf, es : = £ t eS el. 
A subfamily 8ft of Jr is said to be balanced if there are nonnegative weights 
Xs, SeSft, such that eN = ^SG^ Xses. One can prove that 2ft is balanced if and 
only if mN e conv {n?: S e 2ft}, were ms is the center of gravity of the face As, 
that is, ms = j£j, where \S\ denotes the cardinality of 5. In fact we need 
to know that mN e conv {nf :Se2ft} implies eN = £ 5 G # Xs es. But it is 
obvious, because if mN = ^S e^ tsms, where ts > 0, then eN = YjSe® ̂ S^S» where 
nS _ nts 

A — |S |-
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Converselly, assume that 8fi is balanced i.e., (1) eN = £s6^/l se5 , where Xs > 0. 
Then (2) mN = f = £ S E B ^ H = ^ssBtsms. We shall show that 1 = £ 5 B

 s
n
s. 

Let £< = { S e £ : i e S } . The condition (1) means that 1 = YJSGB,^. Hence 
n = ^XiZseB , .^ = XseB^Sl^|. The last equality is a consequence of the fact that 
each set S e B appears in the sum Yj=iY,seBi |S|-times. 

Replacing points ds by the points ms we immediately obtain a point xe A such 
that mN e conv [n? : x e Cs} and this is exactly Shapley's theorem. 

Theorem (KKMS). Let {C? : S e ,/V} fee a fam/fy of dosed subsets of A and 
assume that AT cz [jScTCs for each Te JV. 

Then there exists a balanced family @t such that f]s % Cs 4 0-

KKMS Theorem is an extension of KKM Theorem. To see this, let us assume 
that Cs = 0 for each set S of cardinality greater that 1. Under this assumption the 
family {{/}: i e IV} is the only balanced family. Let C := CW. Then we immedia
tely get 

Theorem (KKM). Let [C :ieN) be a family of closed subsets of A and 
assume that AT cz \JiGTCl for each non-empty subset T cz IV. 

Then f]i€NC^0. 
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