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BOOLEAN GAMES - CLASSIFYING STRATEGIES AND 

OMITTING CARDINALITY ASSUMPTIONS 

Peter Vojtas 

ABSTRACT. Ve deal with a transfinite game on Boolean algebras 

introduced by T. Jeoh. The game yields a fine method for handling 

C-closed dense subsets of Boolean algebras. Ve prove (without 

set-theoretical assumptions) the existence of a j^-closed dense 

subset for a certain type of Boolean algebras determined in the 

game of an uncountable length J^- a generalization of some results 

by M. Foreman. Ve investigate relationship between certain cardi

nal characteristics of Boolean algebras, discuss the existence of 

positional strategies of trees, and give a couple of problems con

cerning the partialy ordered set of all strategies. 

1 • Introduction and notation. In terminology we generally follow 

r^i r9J>Ll 1J, but some notions are introduced in this seotion. Let 

B be an atomless Boolean algebra and oL an ordinal number. Consi

der the following transfinite game Q (B,«t ), introduced by T.Jech 

in £$], between two players White and Black. Let White and Black 

define a decreasing sequence 

(1 ) w o ^ b o ^ w 1 ^ • • • > v * £ b t ^ • • • 
of nonzero elements of B of length ^ ^ by taking turns defining 

its entries* I.e., first White chooses a nonzero w £ B . Then 
' O^" 

Black chooses a nonzero b ^w A . Then White chooses nonzero 
o — o 

w. ̂  b ... The play is won by Black if the sequenoe (1) has non

zero lower bound and length oL ; else the White wins. 

The game Q (B, oi ) (see P0,£0) is defined in exaotly the 
* Q^B,, 

?±... 

samé way as the game Q (B,oC), exoept that the player Black moves 

first at limit stages, i.e. the play of 0l:t(B, eO looks like 

it •-"o9ho9"i9hi900*9hv>"u>hio+i'"cj+i9***9hf9"}i 

T. Jeoh in [5] proved that if the algebra B has a KZ-olosed 

dense subset, then the player Black has a winning strategy in the 

game fl (B,K!)f Q (B#^) • He also formulated the problem whether 
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the inverse implication holds, i.e., does the existence of a winn

ing strategy for the Black in the game Q (B,*C) (flr (BfJC)) imply 

that the algebra B has a K -closed dense subset ? The problem for 

K=U) was investigated in l5j,[3]tl33 **-•<* [if]. For fa (̂  , 

C. Gray in L4J has constructed an algebra £ such that Black wins 

Qt (E, CO.) and £ has no 6^-closed dense subset (nothing simi

lar for the game (X is known). M. Foreman in £3] proved that if 

d(B) = 3 = ND(B) , where ND(B) denotes the nondistributivity of 

B , Black wins Q (Bf;f) a n d ^ = ^ f then the algebra B has a 

2f-closed dense subset. ¥e show that the saturatedness of such an 

algebra can be either Pi or P) and in the first case the same 

conclusion holds without the assumption about the cardinal - expo-

nentation (Theorem 1). 

Ve say that D€LB is a *3-closed dense subset of algebra B 

(we say sometimes base instead of dense subset) if (Vx G B ) 

(3y£ B)(y-=-*) and for every decreasing sequence -fâ  : d><cTj & D 

of the length *C < /\ there is a y €. D such that y £ a^ for each 

cL<^ . Define: 

d(B) = min {IDI: D is a dense subset of B } f 
ND(B) = min {f: B is not (o^ . ,2)-distributive } 9 

Vhsat (B) = min{rC: (tfx €B+)( there is no partition of B x of size tc)}, 

Ahsat(B) = sup {K,:(VxfcB+)(there is a partition of B^ of size *)} f 

\7ods(B) = mini*: there is no * -closed dense subset of B } , 

^ods(B) = sup{*C 2 there is a ^-closed dense subset of B } f 
^(B) = sup ( ̂ (B)) = sup \U : Black wins ^ ( B , cL ) \ , 

^ ( B ) = min ( ̂ (B)) = min f el : White wins QI(Bf <*) J > 

analogously we define V>f V^9 JJr $ ~k for the game QL • 

It is known that ^ 2 ^ = N D( B) (see M ) and that Y> f *,>9 y t 

are regular cardinal numbers (see Cl 13 )• 

2. Omitting cardinality assumptions in the game of uncountable 

length. The following facts may be belong to folklore. 

Proposition. For every atomless Boolean algebra B the following 

hold: 

(i) AhBat(B)£d(B) and Vhsat(B) £d(B) does not hold; 

(ii) ND(B) ̂ rVhsat(B) and ND(B) £ Ahsat(B) does not hold; 

(iii) Acds(B) ̂ KD(B) and Vods(B) ̂ KP(B) does not hold; 

(iv) ^ods(B) ̂ ^ ( B ) and Vcds(B) ^(fi) does not hold; 

(v) ND(B) 5rd(B); 

(vi) Vhsat(B) £(Ahsat(B))+ and VoojsfB) £( 4cds)t 

PROOF. The negative assertions in (i) - (iv) are trivial. 
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(i) Follows easily, for if P is a partition of B then 

IPl £ d(B) . 

(ii) Let <f= ^7hsat(B)<ND(B) * As B is atomless . , there is a 

matrix (9= I P^ : <* < ND(B)) consisting of maximal partitions of B 

such that #i<ji implies P^ strictly refines P̂  # Then for each 

xgP^r the set {ya € P^ : ct < <T & x ^ } is a strictly decreasing 

tower of algebra B and {y^+1 - ŷ  : cL <cT\ Xa a partition of B 

of size 0 * Contradiction* 

(iii) If B has a iC-olosed dense subset, then tC * HD(B) # 
(Follows also from (iv) and ^ ( B ) ̂  1?2(B) = ND(B)f see D O ) , 

(iv) See £>]* 

(v) Assume D = ix^ : (A <• J J is a base of B and <T < ND(B). 

Let P be a strict refinement of the matrix H-^i-x^} : <* < J j # 
For xt£P f take x^ € D with x ^ £ x # Contradiction, 

(vi) Obvious• 

The following Lemma shows that the existence of certain al

gebras has influence on the exponentation of cardinal numbers* 

Lemma. Assume that B is a Boolean algebra such that 

KJ<Vhsat(B) and Y"6 ̂ " (B) . 

Then K £ Ahsat(B) and « r< tfhsat(B) # 
The Proof is analogous as that of Corollary 1 in OXl • 

The next theorem generalizes some results of M. Foreman ( D J K 

Theorem 1. Assume that B is an atomless Boolean algebra suoh that 

d(B) = ND(B) s 2 + and Black wins QX(BtlT) • Then: 

(1) Ahsat(B) < \7hsat(B) # 
(2) Either Ahsat(B) = A + and 7hsat(B) = 3 , or 

Ahsat(B) = 7\ and Vhsat(B) = 3* . 

(3) If Ahsat(B) = •) , then the algebra B has a jf-closed 

dense subset* 

PROOF. (1) If Ansat(B) n \7hsat(B) , then from (i) and (ii) in 

Proposition we have Ahsat(B) = Vhsat(B) = A # But in this 

oase Vhaat(B) should be a weakly inaccessible cardinal number 

(see C73K Contradiction* 

(2) As Vhsat(B) £(Ahsat(B))* , (2) follows from (i) and 

(ii) in Proposition* 

(3) Aplying Lemma, 2 < Vhsat(B) and $-G ^ ( B ) imply a*M. 

Then 7\ £ 3f **/!*"*/>shows that the additional Foreman's set-theore

tical assumption is for algebras in question granted* 

Remarks* To prove a similar result for algebras having bigger den

sity we may be tempted to use the more general construction of base 

matrices from Lemma 2 of Dl]# But if algebra B is (3+f *,»C)-no-
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where distributive, tf^jft1, d(B) = TC* and Ansat(B) = 3 , we 
obtain only d(B)£2+ I 

It might be in place to call the reader's attention to an in
teresting "inverse" exponentation of cardinals in the Theorem 6 of 

C93. ^ + 
Note that for Ahsat(B) = 3 Theorem 1 implies (sfi *" . 

Then take P = min Jmin {f *>T • 3^*3* } i^"} # I-tj:>>u>0 f then the 
algebra B has a £> -olosed dense subset. 

The case ^haat(B) = 7i will be further discussed in § 3 
using positional strategies* 

3. Classifying strategies and problems* The importance of classi
fying different types of strategies was shown in G O , namely the 
Gray's trlok for constructing determined algebras without olosed 
dense subset does not work below ui # 

Definition (£!>])• Ve say that Black has a positional winning stra
tegy in the game Q (B,IC) if there is a function ©: B +-* B+ such 
that Black wins every play of length K in which he follows JD . 
wo,f^woJ»w1fftw1^###*\i»f^)t#*#fWpj>(irj)f... | | < >C . For the 
motivation of the following definition see C8],C93 and ClO # More
over, we mention the following point of view. There is a lot of 
games which finish after reaching the winning position (e.g. chess), 
or at a certain point an evaluation is made to deolde the game 
(e.g., Myoielski's game, some topological games)* Jeoh's game has 
one interesting feature: the Blaok's victory in faot says that we 
oan continue the play. This enables us to study a specific type 
of questions that are not possible for other games: 

- the questions about sets Til i ̂  of ordinals for which Black 
(Vhite) has a winning strategy (see fll]), 

- the questions about relations between strategies for games 
of different length (e.g. does a strategy & for the game Q(B, ot ) 
with «*>& prolongate the strategy P for the game Q(B, (S ) ?) # 

So our Boolean game gives us motivation for studying such 
aspects for other games* For instance, we oan ask (perhaps an ob
scure question): How long, in chess, oan Black or Vhite continue 
the play ? 

Definition ( D O ) . Ve say that the player Black has a simulta
neous winning strategy in the game Q (Or 9 respectively) on al
gebra B if there is one strategy 

C : U { P B : (i <V>1(B)> > B+ 

such that S is winning for Black in eaoh game Q (B, JL ) for 
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4 < ^ ( B ) (^(B, <0 torol< V>2(B)f respectively). 

Consider the set 

y (B) s-}j-> ; p is a winning strategy for Black in Q } 

and a partial ordering of Jp (B) : 

P*T if f 2 ^ 
Then (jr (B), £ ) is a tree of length ^(B) (analogously for Q 

Observe that Black has a simultaneous strategy in O (B) if and 

only if in the tree C/ (B), £ ) there is a branch of the length 

^(B) . 

Games played on a partialy ordered set P and on the Boolean 

completion RO(P) are equivalent (see f5l)» ve shall oonsider the 

special case when P is a tree. It concerns algebras which have 

a base matrix - i.e. a base which forms a tree in the natural or

dering of the algebra B • 

Theorem 2. Assume that T is a tree of height Kf of (if) > CO 

and the player Black has a positional winning strategy in the game 

Q (Tf 7f) with 3T>^0 . Then T ho.s a if-olosed dense subset. 

PROOF* Following the Foreman's proof (see [33), for eaoh t^T we 

will define a t * 6 T , t * i t with the property, that if s is 

a partial play towards t* and t'gT with inf s^t'>t*", then 

there is a partial play towards t"*" extending s,s# such that 

t' ̂ inf s'» t*". Using a positional strategy T for #X(T, ft) defi

ne t -= t and for n£cot 1 = ^(*n) •
 /nie aequenoe {t :n£^} 

has a nonzero lower bound - take one with minimal rank in the tree 

T and denote it by t*~ . Now the proof proceeds as in [37 • 

Ve remark, that Theorem Z deals with a larger class of algeb

ras than that treated in Theorem 1 • 

The following problem seems to be important. 

Problem. Does the existence of a winning strategy for Black on a 

tree T imply the existence of a positional winning strategy for 

Black on T ? 

Consider the following extensions of the representation 

problem from [l \\. The results of our Proposition, [l ll and further 

folklore results are shown below on an oriented graph (arrow — p 

means 6 ). 

Ahsat *> d(B) 

Aods —yn* ^ V< > W* —->ND $>Thsat 
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Question* If we prescribe to each vertex of our graph a cardinal 

number such that inequalities are fulfilled and TT, V> , r*.9 V> ND, 

\7hsat are regular, Vcds ^ (Acds) +, 7h»at4(Ahaat) +, does then 

there exist a Boolean algebra B such that all its characteristics 

are as prescribed (here 1T = supfot : Black has a positional winning 

strategy in A (B, dL )} ) ? Moreover, we can ask whether such an al

gebra exists if we prescribe the existence (or nonexistence) of the 

simultaneous winning strategy for Q of the length V>(B) and for 

Q X I of the length *Z(B). 

The special case of this representation problem arises if 

B = tf( cu)/fin - the algebra of power set of the set of all natural 

numbers modulo the ideal of finite sets* Ve define (see also D ] ) 

*eo = min {iFl: P €. <P( CO )/f in is centered & A F S I D ) , 

\Ct a min {iTl: T £ <?(oj)/f±n is a tower and A T s OV * 

In this oase the graph looks like (B = tf( co)/fin): 

Vods(B) 

W1^K0—^K!t--^Aods(B)-->V1(B)-->^1(B)—3>ND(B) 

In ft] It is showed that ND(B) oan be striotly smaller than o * 

In C2l Con (ZFC + KQ < ND ) is proved and in £T3 it is proved that 

C = co. implies ^ s <*£ and KT is a regular cardinal number* 

This together with Dordal's metatheorem (C2I) gives Con (ZFC+C<NP)« 

Is it consistent that some other inequalities are strict ? In par

ticular, is it consistent that 

Kt < Aods ( (P((u)/fin) ? 

At the end we mention the following problem, presented at the 

Logio Colloquium '82 (D<0)# 

Let B be a Boolean algebra* Put 

AIP ( B ) S sup \ *C : there is a *--closed dense subset of B } , 

VIP(B) S min { < 1 there is no ̂ -closed dense subset of B } * 

The following function describes the global behaviour of our game: 

for a cardinal number A define 

bX(50 a min{AIP(B) : B is such that heH,X(B)\ 

(analogously b ) 

Problem* 1* Does (VK)(3 A )(*>*( ̂  ) > * ) hold ? 
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2. Is there a regular oardinal number <& suoh that for each 

K<& there is a /I < & suoh that b( ̂  ) ^ v? ? 

Note that b( % ) ^ /\ and the failure of the implication 

"the existence of a strategy for Black implies the existence of a 

closed dense subset" causes that the function b is regressive. 

This makes the questions more interesting. 
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