USA 11

Peter Vojtáš

Boolean games - Classifying strategies and omitting cardinality assumptions

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 3. pp. [361]--368.

Persistent URL: http://dml.cz/dmlcz/702158

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

BOOLEAN GAMES - CLASSIFYING STRATEGIES AND OMITTING CARDINALITY ASSUMPTIONS

Peter Vojtás

Abstract

We deal with a transfinite game on Boolean algebras introduced by T. Jeoh. The game yields a fine method for handing \mathcal{K}-olosed dense subsets of Boolean algebras. We prove (without set-theoretical assumptions) the existence of a $\gamma^{+}+$closed dense aubset for a certain type of Boolean algebras determined in the game of an uncountable length γ^{γ} - a generalization of some results by M. Foreman. We investigate relationship between certain cardinal characteristics of Boolean algebras, discuss the existence of positional strategies of trees, and give a couple of problems concerning the partialy ordered set of all strategies.

1. Introduction and notation. In terminology we generally follow $[8],[9],[11]$, but some notions are introduced in this section. Let B be an atomiess Boolean algebra and α an ordinal mumer. Consider the following transfinite game $g^{I}(B, \alpha)$, introduced by T.Jech in [5], between two players White and Black. Let White and Black define a deoreasing sequence
of nonzero elements of B of length $\leqslant \alpha$ by taking turns defining its entries. I.e., first White ohooses a nonzero $w_{0} \in B$. Then Black chooses a nonzero $b_{0} \leq w_{0}$. Then White ohooses nonzero $w_{1} \leqslant b_{0} \ldots$ The play is won by Black if the sequence (1) has nonzero lower bound and length α; else the White wins.

The game $g^{I I}(B, \alpha)(s e \theta[4],[3])$ is defined in exaotiy the same way as the game $g^{I}(B, \alpha)$, except that the player Black moves first at limit stages, i, e. the play of $g^{I I}(B, \alpha)$ looks like
$w_{0}, b_{0}, w_{1}, b_{1}, \ldots, b_{\omega}, w_{\omega}, b_{\omega+1}, w_{\omega+1}, \ldots, b_{\xi}, w_{\xi}, \ldots$
T. Jeoh in [5] proved that if the alsebra B has a c^{+}-olosed
donse subset, then the playor Black has a rinning strategy in the game $g^{I}(B, \mathbb{C}), g^{I I}(B, N)$. He also formulated the problem whether
the inverse implication holds, i.e., does the existence of a winning strategy for the Black in the game $g^{I}(B, K)\left(g^{I I}(B, K)\right)$ imply that the algebra B has a K^{+}-closed dense subset? The problem for $K=\omega$ was investigated in [5], [3], [8] and [11]. For $K=\omega_{1}$, C. Gray in [4] has constructed an algebra E such that Black wins $g^{I I}\left(E, \omega_{1}\right)$ and E has no ω_{2}-closed dense subset (nothing similar for the game g^{I} is known). M. Foreman in [3] proved that if $\mathrm{d}(\mathrm{B})=\lambda^{+}=\mathrm{ND}(\mathrm{B})$, where $\mathrm{ND}(\mathrm{B})$ denotes the nondistributivity of B, Black wins $g^{I}(B, \gamma)$ and $\lambda^{<\gamma}=\lambda$, then the algebra B has a γ^{+}-closed dense subset. We show that the saturatedness of such an algebra can be either λ^{+}or λ^{++}and in the first case the same conclusion holds without the assumption about the cardinal - exponentation (Theorem 1).

We say that $D \subset B^{+}$is a λ-olosed dense subset of algebra B (we say sometimes base instead of dense subset) if ($\forall x \in B^{+}$) $(\exists y \in D)(y \leq x)$ and for every deoreasing sequence $\left\{a_{\alpha}: \alpha<\tau\right\} \subseteq D$ of the length $\tau<\lambda$ there is a $y \in D$ suoh that $y \leq a_{\alpha}$ for each $\alpha<\boldsymbol{r}$. Define:

$$
\begin{aligned}
d(B) & =\min \{|D|: D \text { is a dense subset of } B\}, \\
\operatorname{ND}(B) & =\min \{\delta: B \text { is not }(\delta, \cdot, 2) \text {-distributive }\},
\end{aligned}
$$

∇ hsat $(B)=\min \left\{\kappa:\left(\forall x \in B^{+}\right)\right.$(there is no partition of $B_{\bar{x}}$ of size $\left.\left.K\right)\right\}$, $\Delta \operatorname{hsat}(B)=\sup \left\{\mathbb{C}:\left(\forall x \in B^{+}\right)\left(\right.\right.$there is a partition of B_{x} of size $\left.\left.K\right)\right\}$, $\operatorname{\nabla ods}(B)=\min \{x:$ there is no K-closed dense subset of $B\}$,

$\nu_{1}(B)=\sup \left(\gamma_{i}^{I}(B)\right)=\sup \left\{\alpha:\right.$ Black wins $\left.g^{I}(B, \alpha)\right\}$,
$\eta_{1}(B)=\min \left(z^{I}(B)\right)=\min \left\{\alpha:\right.$ White wins $\left.g^{I}(B, \alpha)\right\}$, analogously we define $\nu_{2}, \eta_{2}, \gamma^{I I}, 3^{I I}$ for the game $g^{I I}$.

It is known that $\eta_{2}(B)=\operatorname{ND}(B)($ see $[3])$ and that $\gamma_{1}, \gamma_{2}, \eta_{1}$ are regular cardinal mumbers (see [11]).
2. Omitting cardinality assumptions in the game of uncountable
length. The following facts may be belong to folkiore. Proposition. For every atomless Boolean algebra B the following hold:
(i) Δ hsat $(B) \leqslant d(B)$ and ∇ hsat(B) $\leqslant d(B)$ does not hold;
(ii) $\mathrm{ND}(\mathrm{B}) \leqslant \nabla \mathrm{hsat}(\mathrm{B})$ and $\mathrm{ND}(\mathrm{B}) \leqslant \Delta$ hsat (B) does not hold;
(iii) $\Delta \mathrm{cds}(B) \leqslant N D(B)$ and $\nabla o d s(B) \leqslant N D(B)$ does not hold;
(iv) Δ ods ($B) \leqslant \nu_{1}(B)$ and ∇ ods $(B) \leqslant \nu_{1}(B)$ does not hold;
(∇) $\mathrm{ND}(\mathrm{B}) \leq \mathrm{d}(\mathrm{B})$;
(Vi) $\nabla_{\text {hsat }}(B) \leqslant(\Delta \text { hsat(B) })^{+}$and $\quad \nabla$ ods $(B) \leqslant(\Delta \text { cds })^{+}$.

PROOF. The negative assertions in (i) - (iv) are trivial.
(i) Follows easily, for if P is a partition of B then $|P| \leq d(B)$.
(ii) Let $\delta=\nabla_{\text {hat }}(B)<N D(B)$. As B is atomics, there is a $\operatorname{matrix} H=\left\{P_{\alpha}: \alpha<\mathrm{ND}(B)\right\}$ consisting of maximal partitions of B such that $\alpha<\beta$ implies P_{β} strictly refines P_{α}. Then for each $x \in P_{\delta}$ the set $\left\{y_{\alpha} \in P_{\alpha}: \alpha<\delta \& \delta^{\prime} \leqslant y_{\alpha}\right\}$ is a strictly decreasing tower of algebra B and $\left\{y_{\alpha+1}-y_{\alpha}: \alpha<\delta\right\}$ is a partition of B of size δ. Contradiction.
(iii) If B has a K-closed dense subset, then $\kappa \leqslant N D(B)$. (Follows also from $(i v)$ and $\gamma_{1}(B) \leq \eta_{2}(B)=\operatorname{ND}(B)$, see [11]). (iv) See [5].
(v) Assume $D=\left\{x_{\alpha}: \alpha<\delta\right\}$ is a base of B and $\delta<\operatorname{ND}(B)$. Let P be a strict refinement of the matrix $\left\{\left\{x_{\alpha} ;-x_{\alpha}\right\}: \alpha<\delta\right\}$. For $x \in P$, take $x_{\alpha} \in D$ with $x_{\alpha} \leq x$. Contradiction.
(vi) Obvious.

The following Lemma shows that the existence of certain algebras has influence on the exponentation of cardinal mimers. Lemma. Assume that B is a Boolean algebra such that

$$
\kappa<\nabla \operatorname{hsat}(B) \quad \text { and } \quad \gamma \in \partial b^{I I}(B)
$$

Then $\kappa^{\gamma^{\gamma}} \leqslant \Delta$ hsat(B) and $k^{\gamma}<\nabla_{\text {hat (B) }}$.
The Proof is analogous as that of Corollary 1 in [11].
The next theorem generalizes some results of M. Foreman ([3]). Theorem 1. Assume that B is anatomies Boolean algebra such that $d(B)=\operatorname{ND}(B)=\lambda^{+}$and Black wins $g^{I}(B, \gamma)$. Then:
(1) $\Delta \operatorname{hsat}(B)<\nabla \operatorname{hsat}(B)$.
(2) Either Δ hat $(B)=\lambda^{+}$and ∇ hat $(B)=\lambda^{++}$, or $\Delta \operatorname{hsat}(B)=\lambda$ and $\quad \nabla$ hat $(B)=\lambda^{+}$.
(3) If Δ hat (B) $=\lambda$, then the algebra B has a $\gamma^{+}+c l o s e d$ dense subset.
PROOF. (1) If Δ hsat(B) $=\nabla \operatorname{lisat}(B)$, then from (i) and (ii) in Proposition we have Δ hat $(B)=\nabla$ hat $(B)=\lambda^{+}$. But in this case ∇ hsat(B) should be a weakly inaccessible cardinal number (see [7]). Contradiction.
(2) As ∇ hat $(B) \leq(\Delta \text { heat }(B))^{+}$, (2) follows from (i) and (ii) in Proposition.
(3) Aplying Lemma, $\lambda<\nabla \operatorname{sisat}(B)$ and $\gamma^{\prime} \in \gamma^{I}(B)$ imply $\lambda^{\gamma}=\lambda$. Then $\lambda \leqslant \lambda^{<\gamma} \leqslant \lambda^{\gamma}=\lambda$ shows that the additional Foreman's set-theoretical assumption is for algebras in question granted.
Remarks. To prove a similar result for algebras having bigger density we may be tempted to use the more general construction of base matrices from Lemma 2 of $[11]$. But if algebra B is $\left(\lambda^{+}, \ldots, K\right)-n o-$
where distributive, $\gamma \in \gamma^{I}, d(B)=x^{\gamma}$ and $\Delta \operatorname{hsat}(B)=\lambda$, we obtain only $d(B) \leqslant \lambda^{+}$i

It might be in place to call the reader's attention to an interesting "inverse" exponentation of cardinals in the Theorem 6 of [9].

Note that for Δ hsat $(B)=\lambda^{+}$Theorem 1 implies $\left(\lambda^{+}\right)^{\gamma}=\lambda^{+}$. Then take $\rho=\min \left\{\min \left\{\tau \leq \gamma^{2}: \lambda^{q}=\lambda^{+}\right\}, \gamma\right\}$. If $\rho>\omega_{0}$, then the algebra B has a ρ^{+}-olosed dense subset.

The case Δ hast $(B)=\lambda^{+}$will be further disoussed in § 3 using positional strategies.
3. Classifying strategies and problems. The importance of olassifying different types of strategies was shown in [11], namely the Gray"s trick for construoting determined algebras without closed dense subset does not work below w_{1}.
Definition ([5]). We say that Black has a positional winning strategy in the game $g^{I}(B, K)$ if there is a funotion $\rho: B^{+} \rightarrow B^{+}$such that Black wins every play of length K in which he follows $\rho:$ $w_{0}, \rho\left(w_{0}\right), w_{1}, \rho\left(w_{1}\right), \ldots, w_{\omega}, \rho\left(w_{w}\right), \ldots, w_{j}, \rho\left(w_{\xi}\right), \ldots ; \xi<K$. For the motivation of the following definition see [8],[9] and [11]. Moreover, we mention the following point of view. There is a lot of games which finish after reaching the winning position (e.g. chess), or at a certain point an evaluation is made to decide the game (e.6., Myoielski's game, some topological games). Jech's game has one interesting feature: the Black's viotory in faot says that we can contime the play. This enables us to study a specific type of questions that are not possible for other games:

- the questions about sets $\gamma\}, Z$ of ordinals for which Blaok (White) has a winning strategy (see [11]),
- the questions about relations between strategies for games of different length (e.g. does a strategy σ for the game $g(B, \alpha)$ with $\alpha>\beta$ prolongate the strategy ρ for the game $g(B, \beta)$ 2).

So our Boolean game gives us motivation for studying suoh aspects for other games. For instance, we oan ask (perhaps an obsoure question): How long, in chess, oan Black or White continue the play ?

Definition ([8]). We say that the player Black has a simultaneous winning strategy in the game $g^{I}\left(g^{I I}\right.$, respeotively) on algebra B if there is one strategy

$$
\sigma: \bigcup\left\{\beta_{B}: \beta<\nu_{1}(B)\right\} \longrightarrow B^{+}
$$

such that 6 is winning for Black in each game $g^{I}(B, \alpha)$ for
$\alpha<\nu_{1}(B)\left(g^{I I}(B, \alpha)\right.$ for $\alpha<\nu_{2}(B)$, respeotively).
Consider the set
$y^{I}(B)=\left\{\rho ; \rho\right.$ is a winning strategy for Black in $\left.g^{I}\right\}$
and a partial ordering of $\rho^{I}(B)$:
$\rho \leqslant \tau$ if $\rho \geq \tau$
Then $\left(\varphi^{I}(B), \leq\right)$ is a tree of length $\nu_{1}(B)$ (analogousiy for $g^{I I}$). Observe that Black has a simultaneous strategy in $g^{I}(B)$ if and only if in the tree $\left(\varphi^{I}(B), \leq\right)$ there is a branoh of the length $\gamma_{1}(B)$.

Games played on a partialy ordered set P and on the Boolean completion RO(P) are equivalent (see [5]). We shall consider the special case when P is a tree. It conoerns algebras which have a base matrix - i.e. a base which forms a tree in the natural ordering of the algebra B.
Theorem 2. Assume that T is a tree of height κ, of $(\kappa)>\omega$ and the player Black has a positional winning strategy in the game $g^{I}\left(T, \gamma^{\prime}\right)$ with $\gamma>\omega_{0}$. Then T has a $\gamma^{+}+$olosed dense subset. PROOF: Following the Foreman's proof (see [3]), for each $t \in T$ we will define $a t^{*} \in T, t^{*} \leqslant t$ with the property, that if \bar{s} is a partial play towards t^{*} and $t^{*} \in T$ with inf $\bar{s} \geqslant t^{*}>t^{*}$, then there is a partial play towards t^{*} extending $\bar{\sigma}, \vec{s}^{\circ}$ such that $t^{\bullet} \geqslant \inf \bar{s}^{\bullet} \geqslant t^{*}$. Using a positional strategy π for $g^{I}(T, \gamma)$ define $t_{0}=t$ and for $n \in \omega t_{n+1}=\pi\left(t_{n}\right)$. The sequence $\left\{t_{n} ; n \in \omega\right\}$ has a nonzero lower bound - take one with minimal rank in the tree T and denote it by t^{*}. Now the proof proceeds as in [3].

We remark, that Theorem 2 deals with a larger class of algebras than that treated in Theorem 1.

The following problem seems to be important.
Problem. Does the existence of a winning strategy for Black on a tree T imply the existence of a positional winning strategy for Black on T ?

Consider the following extensions of the representation problem from [11]. The results of our Proposition, [11] and further folklore results are shown below on an oriented graph (arrow \longrightarrow means \leq).

Question. If we prescribe to each vertex of our graph a oardinal number such that inequalities are fulfilled and $\pi, \gamma_{1}, \eta_{1}, \nu_{2}, N D$, ∇ hsat are regular, ∇ cds $\leq(\Delta \text { cds })^{+}, \nabla$ hsat $\leq(\Delta \text { hsat })^{+}$, does then there exist a Boolean algebra B such that all its characteristios are as prescribed (here $\pi=\sup \{\alpha$: Black has a positional winning strategy in $\left.g^{I}(B, \alpha)\right\}$) ? Moreover, we can ask whether suah an algebra exists if we presoribe the existence (or nonexistence) of the simultaneous winning strategy for g^{I} of the length $\nu_{1}(B)$ and for $g^{I I}$ of the length $\nu_{2}(B)$.

The special case of this representation problem arises if $B=P(\omega) / f i n-$ the algebra of power set of the set of all natural numbers modulo the ideal of finite sets. We define (see also [1]) $K_{c}=\min \left\{|F|: F \subseteq P(\omega) / f i n\right.$ is contered \& $\left.\Lambda_{F}=\mathbb{D}\right\}$, $K_{t}=\min \{|T|: T \subseteq P(\omega) / f i n$ is a tower and $\Lambda T=D\}$. In this case the graph looks like $(B=P(\omega) / f i n)$:

In [1] it is showed that $N D(B)$ can be strictiy smaller than c. In [2] Con (ZFC $\left.+K_{0}<N D\right)$ is proved and in [7] it is proved that $K_{c}=\omega_{1}$ implies $K_{t}=\omega_{1}$ and K_{c} is a regular cardinal number. This together with Dordal is metatheorem ([2]) gives Con (ZFC+ $\left.K_{t}<N D\right)$. Is it consistent that some other inequailties are striot ? In particular, is it consistent that

$$
K_{t}<\Delta \text { ods }(P(\omega) / \Phi i n) ?
$$

At the end we mention the following problem, presented at the Logic Colloquium ${ }^{\prime} 82$ ($[10]$).

Let B be a Boolean algebra. Put
$\Delta I P(B)=\sup \left\{K:\right.$ there is a K^{+}-olosed dense subset of $\left.B\right\}$,
$\nabla \operatorname{IP}(B)=\min \left\{K:\right.$ there is no R^{+}-olosed dense subset of $\left.B\right\}$. The following function desoribes the global behaviour of our game: for a cardinal number λ define
$b^{I}(\lambda)=\min \left\{\Delta I P(B): B\right.$ is suah that $\left.\lambda \in \gamma^{I}(B)\right\}$
(analogously $b^{I I}$)
Problem. 1. Doea $(\forall K)(\exists \lambda)\left(b^{\circ}(\lambda) \geqslant K\right)$ hold ?
2. Is there a regular cardinal number \mathscr{A} such that for each $\kappa<\mathscr{b}$ there is $a \lambda<\mathscr{G}$ suoh that $b(\lambda) \geqslant \kappa$?

Note that $b(\lambda) \leqslant \lambda$ and the failure of the implication nthe existence of a strategy for Black implies the existence of a closed dense subset" oauses that the function b is regressive. This makes the questions more interesting.

REFERENCES

[1] BALCAR b., PELANT J., SIMON P. "The space of ultrafilters on N covered by nowhere dense sets", Fund. Math. 110(1980), 11-24.
[2] DORDAL P. L. "Independence results concerning some combinatorial properties of contimum", Ph. D. Thesis, Harvard Univ., Cambridge, Mass. 1982.
[3] FOREMAN M. "Games played on Boolean algebras", Manusoript.
[4] GRAY C. "Iterated foroing from the strategic point of view", Ph. D. Thesis, Berkeley, 1980.
[5] JECH T. "The game theoretic property of Boolean algebras", Logic Colloquium ' 77 (A. Mc Intyre et al., eds.) 135-144, NHPC Amsterdam 1978.
[6] JECH T. "Set theory", Academic Press, Now York 1978.
[7] SZYMANSKI A., ZHOU HAO-XUA "The behaviour $\omega^{2 *}$ under some consequences of Martin's axiom", General Topology and its Relations to Modern Analysis and Algebra V. (Proo. Fifth Prague Topological Symp. 1981) 577-584, Heldermann Verlag, Berlin, 1982.
[8] VOJTAS P. "A transfinite Boolean game and a generalization of Kripke's embedding theorem", ibid, 657-662.
[9] VOJTAS P. "Simultaneous strategies and Boolean games of uncountable length", (Proo. 10th Winter School on Abstract Analysis, Srni 1982) Spplemento ai Rendicanoti del Circolo Matematioo di Palermo, Serie II, 2, 1982, 293-297.
[10] VOJTAS P. "White and Black - a Boolean game", Abstraots of the Logio Colloquium '82, Flrenze, to appear in J. Symb.Logic.
[11] VOJT\&Š P. "Game properties of Boolean algebras", Comment. Math. Univ. Carolinae, to appear.

MATHEMATICAL INSTITUTE OF THE SLOVAK ACADEMY OF SCIENCES
KARPATSKA 5, O40 01 KOSICE
CZECHOSLOVAKIA

