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THE PARABOLIC EQUATIONS AS A LIMITING CASE 
OF HYPERBOLIC AND ELLIPTIC EQUATIONS 

M. ZLÁMAL, Brno 

In this lecture I shall deal with some problems concerning partial differential equa
tions with a small parameter at the highest derivatives. Contrary to ordinary diffe
rential equations these questions had not appeared in the journals until the course 
of the last twelve years. It was an article by N. Levinson [1] which drew attention of 
the mathematicians to these problems. With respect to its importance I will say a few 
words about it. 

In his paper Levinson considers the Dirichlet problem for the equation 

(1) e Au + A(x, y) ux + B(x, y) uy + C(x, y)u = D(x, y) 

in an open simply or multiply connected region .R with a boundary dR consisting of 
a finite number of simple closed curves, c is a small positive parameter and the question 
is whether the solution u of (1) satisfying the given boundary condition 

(2) u\dR = q> 

tends to some solution of the reduced equation 

(3) A(x, y) Ux + B(x, y) Uy + C(x, y)U = D(x, y) 

which we get putting e = 0 in (1). It is obvious that in general any solution of (3) 
cannot satisfy the boundary condition (2) as the solution of (1) does. That is why u 
cannot tend to U in the whole region R. Levinson defines the so called regular quadri
lateral. I can only say that it is a region bounded by two arcs Sl9 S2of the boundary dR 
and two characteristics pl9 p2 of a certain system of differential equations. Under 
assumptions concerning the smoothness of coefficients of (1) and of the boundary dR 
and under the assumption that there exists a function r(x, y) which is twice conti
nuously differentiable in a region R0 => R and such that ATX + BTy > 0 Levinson 
proved the asymptotic formula 

(4) u = U + h(x, y) e~9(x'y)l8 + 0(s±) . 

In this formula U is the solution of (3) satisfying the initial condition U\Sl = u|Si, 
g(x, y) is a function which is positive outside of S2 and equals zero on S2 and h = 
= u — U on S2. What follows from this formula? The third term on the right side 
converges to zero uniformly in the whole quadrilateral. The second term is of impor
tance only in a very small neighbourhood of S2. For if (x, y) $ S2, g(x, y) is positive 
and the factor exp [—g(x, y)le] converges very rapidly to zero. Consequently we see 
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that u -> U uniformly in every closed subregion of the quadrilateral which does not 
contain S2. The term h(x, y) exp [—g(x, y)/s] is characteristic for the problems we 
speak about and Levinson calls it the boundary layer term. 

Levinsons' paper had a rather great response in the literature. There appeared a 
number of papers generalizing his results and also many papers dealing with the same 
problem for elliptic equations of higher order. I only mention the important papers 
by Visik and Lyusternik [2], [3] who created a theory concerning elliptic equations of 
higher order. In all these papers as much as in Levinson's, the reduced equations are of 
lower order then the original ones and this accounts for the appearance of boundary 
layer terms in the asymptotic formula. The problems I am going to speak about 
now are such that the reduced equations are of the same order as the original ones, 
namely of the second order, but they are of a different type and this necessitates the 
appearance of boundary layer terms in the asymptotic formulas. 

Five years ago the following very simple problem arose from a consultation with an 
engineer: to study the dependence of the solutions and its first derivatives on the para
meter e in the mixed problem for the equation 

(5) sutt + ut - uxx = 0 

where e is a small positive parameter. It seems natural to take as the first approxima
tion for this solution the corresponding solution U of the equation of heat flow Ut = 
= Uxx. But in general this solution cannot satisfy both initial conditions U(x, 0) = 
= f(x) and Ut(x, 0) = g(x). On the other hand to solve the mixed problem for (5) is 
an elementary matter. We seek the solution by means of the Fourier method in the 
form of a series 

Z°° / A • nn 
un(t) sin — x . 

« = i I 

Now one can expect that having calculated un(t) we get from this series an asympto
tic formula for the solution u in which the first term is the solution U. But if we calcu
late un(t) we get a linear second order differential equation and the discriminant of the 
corresponding characteristic equation is equal to 1 — 4n2n2sll2. If n ->oo and s -> 0 
this expression is not of the same sign and this greatly complicates the situation. In 
short the problem mentioned above is not so simple as it seems to be and it is not 
possible to obtain the asymptotic formula directly from the Fourier series. 

Dealing with this question I found from [4] the following equation: 

,,\ A 1 d2P dp 
(6) Ap = — —-- + a --- . 
W c2 dt2 dt 
In this equation a is a constant and c is the velocity of sound so that 1/c2 is very small. 
The author who needed to know dp/dt neglected the first term of the right-hand side 
of (6) so that he got the equation of heat flow instead of the wave equation. The justi
fication of this approximation is missing, of course. 
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Generalizing both problems I put the following one (see [8]): to find the asymptotic 
formulas for the solution and its first derivatives in the mixed problem for the equa
tion 

(7) sutt + p(t) ut- Lu = F(x, t) 

where 

<8) Lu=t ±(alj(x)^-)-a(x)u. 
i,j=l OXi \ OXjJ 

In this equation x = (xu ..., xn) denotes a point in En, the coefficients au(x), a(x) are 
•defined in the closure of a bounded domain Q c En and F(x, t) in the cylinder Q = 
= Q x <0, oo), p(t) is positive for all t = 0, a(x) is nonnegative and the operator 
Lu is uniformly elliptic in Q: 

n n 

(9) atJ{x) = aji(x) , £ ay{,{y = a £ # , a = const > 0 . 
i , J = l i = l 

Equation (7) is hyperbolic in Q and we consider the mixed problem with the boundary 
condition of the first kind u\s = 0 (S is the boundary of Q) though the case with 
boundary conditions of the second and third kind can be treated in the same way. The 
reduced equation is of the form 

ttO) p(t) Ut- LU = F(x, t) 

which is an equation of parabolic type. There is only one initial condition: U(x, 0) = 
= f(x). The boundary condition remains the same: U\s = 0. 

First I sought the solution u in a form which was similar to that used by Levinson. 
I succeeded in finding asymptotic formulas but for the boundary values on S of f(x), 
g(x) and F(x, t) I had to assume more than is necessary and sufficient to the existence 
of the solution u. This is, of course, unsatisfactory. The reason is that, however, 
smooth the boundary S of Q may be, the actual boundary is not smooth since the 
domain in which (7) is considered is the cylinder Q x <0, T> or Q x <0, oo) and it is 
necessary to seek the solution u in a substantialy more complicated form. 

I overcame this difficulty and proved the asymptotic formulas under assumptions 
which, for the boundary values of the functions / g, F, are necessary and sufficient 
to the existence of the solution w. In the homogeneous case when the formulas hold 
in the whole interval <0, oo) they read 

a) [ |n\ + 3 is even: 

( i i ) 

« = V + 0(e) , ut = Ut + M k(x) e-W + 0(e1l4) , uXi = UXt + 0(e^) . 

b) [An] + 3 is odd: 
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Ѓ12) 

ß(t) u = U + 0(г), ut=Ut + ^J-k(x)e-W° + 0(Є

3l*), uXi = VXi + 0(s). 

Here 

v(() = í ß(s) ds , к(x) = g(x) - Ut(x, 0) , 

The boundary layer term appears in the formula for ut only. This is natural since 
u(x, 0) = U(x, 0) but in general ut(x, 0) 4- Ut(x9 0). We also see that this term is of 
importance only for small positive t. In addition I must say that the equation (7) was 
considered ten years ago by Krzyzanski [5] in the special case ut(x9 0) = Ut(x9 0} 
which meant that the boundary layer term did not appear. 

In proving formulas (11) and (12) I needed rather strong assumptions concerning; 
the smoothness of the boundary S. In case of the telegraphic equation 

(13) sutt + P(t) ut = AM 

I derived the formulas 

( 1 4 ) u = U + 0(e) , ||u, - Ut - M k(x) *-«>/< \\L2(Q) = 0(a) , 

I K - tf*,li.2<i» = °00 • 
These are not so precise as the preceding ones; but as to the smoothness of the boun
dary S it is sufficient that it is a Lyapunov surface. 

It would be possible to prove formulas (14) for equation (7), too, under the mere 
assumption that the domain Q is normal (a domain is normal if the Dirichlet problem 
for the Laplace equation is solvable whatever continuous values are prescribed on its 
boundary) if one would use the results of V. A. Il'in published two years ago [6]. 

All estimates that were necessary for proving the asymptotic formulas (11) and (12) 
were carried through by means of the Fourier method. It is an obvious idea to use the 
Fourier integrals and to prove in a similar way the asymptotic formulas for the solu
tion of the Cauchy problem for equation (7). This means, of course, to limit oneself to 
the equation with constant coefficients. I dealt with this problem in [9] and proved 
the asymptotic formulas similar to that mentioned above under one restrictive as-
si mption, namely that the initial values have a compact support. 

In all questions I have spoken about the original equation was always hyperbolic and 
the reduced one parabolic. It is an obvious idea to take as the original equation an 
elliptic one such that the reduced equation is again parabolic. In [10] I formulated the 
following problem: to investigate the solution of the Dirichlet problem for the elliptic 
equation 

(15) uxx + euyy + A(x9 y) ux - B(y) uy -F C(x, y) u = F(x9 y) 
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in a region R whose boundary dR consists of a segment of the line y = yt, of two con

tinuous curves x = v^y), x = v2(y) with v^y) < v2(y) and of a segment of the line 

y = y2- Under usual assumptions of the smoothness of the coefficients and of the 

boundary dR and under the assumption B(y) > 0 I derived the following formula 

(16) u = U + h(x, y, e) e~aiy),e + 0(e±) 

where h = 0(1) in R and <x(y) = $y

y

2B(s) ds. In this formula U is the solution of the 

reduced parabolic equation 

(17) Uxx + A(x, y) Ux - B(y) Uy + C(x, y) U = F(x, y) 

which assumes the same boundary value as the solution u on the segment of the line 

y = yx and on the curves x = vx(y), x = v2(y). The second term on the right-hand 

side is the boundary layer term since it becomes important only near the line y = y2 

where it equalises different values of u and L7. 
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