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POINCAR�E{SOBOLEV AND ISOPERIMETRICINEQUALITIES, MAXIMAL FUNCTIONS, ANDHALF-SPACE ESTIMATES FOR THE GRADIENTRichard L. WheedenAt the conference I gave four lectures. The most detailed part of thematerial below is related to Lecture 3 which concerns joint work with Prof.Michael Wilson about half-space estimates for the gradient [WWi]. Theother three lectures that I gave were about papers that are already pub-lished or in press. For the sake of completeness, their surveys are presentedhere (see the references at the end of this article). In addition, related toLecture 2, the paper [FLW] concerning Poincar�e's inequality for vector �eldsof H�ormander type now exists in preprint form.Lecture 1: Fractional maximal functions ([W1], [SWZ])Consider the fractional maximal function on Rn,M�f(x) = supB : x2B 1jBj1��=n ZB jf(y)j dy;where B denotes a ball in Rn, 0 < � < n. The problem is to characterizethe weights in the inequality�ZRn jM�f(x)jqw(x) dx�1=q � c�ZRn jf(x)jpv(x) dx�1=por (in norms)(�) kM�fkLqw � ckfkLpv ;where 1 < p � q <1, c is a positive constant independent of the functionf , and v, w are weight (measurable and a.e. nonnegative) functions.231



232 R.L. WHEEDENHistory. (1) D.R. Adams (1973, [A]) proved that a necessary and su�cientcondition for the validity of (�), when v(x) � 1, q > p, � < n=p, isZB w dx � cjBj( 1p��n )q for all balls B � Rn:(2) B. Muckenhoupt and R.L. Wheeden (1974, [MW]) showed that underthe assumptions 1=q = 1=p � �=n, � < n=p, w = vq=p, a necessary andsu�cient condition for (�) to hold isjBj�n�1�ZB w�1=q�ZB v� 1p�1�q=p0 � c for all balls B � Rn;i.e., vq=p 2 A1+q=p0 (1=p+ 1=p0 = 1).(3) E.T. Sawyer (1982, [S]) found a condition, namely,�ZQ M�(�Qv� 1p�1 )qw dx�1=q � c�ZQ v� 1p�1 dx�1=p for all cubes Q � Rn;which is necessary and su�cient for (�) to be valid provided p � q.The following characterization holds for p < q (1993, [W1])Theorem 1. Let 1 < p < q < 1 and 0 < � < n. Then (�) holds if andonly if v, w satisfy(��) �ZRn w(x) dx(jBj1=n + jx� xB j(n��)q�1=q�ZB v(x)� 1p�1 dx�1=p0 � cfor all balls B � Rn, where xB is the center of B and c is a positive constantindependent of B.Remark. (1) We can replace balls by cubes.(2) In case the weight � = v�1=(p�1) satis�es the reverse doubling condi-tion , i.e.,(RD) 9 �; � > 1 such that �(�B) � ��(B) for all balls B � Rn



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 233(where �B = fx : jx�xB j < �r(B)g, �(B) = RB �(x) dx) then the conditionis equivalent to the condition(A�p;q) jBj�n�1w(B)1=q�(B)1=p0 � C for all balls B � Rn:This condition is well-known to be necessary and su�cient for the weak-typeestimate supt>0 tw(fx : M�f(x) > tg)1=q � ckfkLpv ;even for p = q.The fractional maximal function was used in [MW] to help control theRiesz fractional integralI�f(x) = ZRn f(y) 1jx� yjn�� dy;but it turns out that I� arises (or can be made to arise) in the proof ofTheorem 1. In fact, the proof shows that the dual weak type behavior of I�is decisive forM�. The condition on the weights in Theorem 1 is essentiallythe same as that given in [GaK] in order to characterize the weights forwhich there is the dual weak-type estimatesupt>0 t �(fx : I�f(x) > tg)1=p0 � ckfkLq0w�1=(q�1) ;where � = v� 1p�1 , 1 < p < q <1.By combining these results with a strong type characterization [S] for theboundedness of I�, we getTheorem 2. For 1 < p < q <1, we have(��) I� : Lpv ! Lqw(i.e., in norms, kI�fkLqw � ckfkLpv with c > 0 independent of f) if and onlyif both conditions M� : Lpv ! Lqwand M� : Lq0w�1=(q�1) ! Lp0v�1=(p�1)hold.Of course, the operator I� is self-adjoint, so (��) is equivalent toI� : Lq0w�1=(p�1) ! Lp0v�1=(p�1) .



234 R.L. WHEEDENMore general context.Let us consider a homogeneous space (X; d; �) where d is a quasi-metricand � is a measure in the space X that satisfy(1) d(x; y) = 0 if and only if x = y,(2) d(x; y) = d(y; x) for all x; y 2 X ,(3) there is a constant K > 0 such that d(x; y) � K[d(x; z)+ d(z; y)], forall x; y; z 2 X,(4) there is a constant C > 0 such that ��B(x; 2r)� � C��B(x; r)�,where B(x; r) = fy : d(x; y) < rg (such a measure � is said to satisfy thedoubling condition, and we write � 2 (DC)).We also assume that B(x;R) n B(x; r) is not empty for 0 < r < R < 1and that X has a group structure with respect to \+" such that(5) d(x+ z; y + z) = d(x; y),(6) �(�B + z) = �(B) where �B = fx : � x 2 Bg.It follows easily from (5), (6) that d(0;�x) = d(0; x) and �(�B) = �(B).This is the sort of situation considered in [SW2], and we will use many ideasfrom there.Let M(fd�) = supB : x2B 1�(B)1� ZB jf(y)j d�(y)where 0 <  < 1 and d� is a Borel measure and the supremum is taken overall balls B � R.De�ne Bxy = B�x; d(x; y)� and note that �(Bxy) � �(Byx) since � 2(DC).The main result isTheorem 3. If 1 < p < q <1 and 0 <  < 1, then(� � �) �ZX ��M(fd�)��qd!�1=q � c�ZX jf jpd��1=pholds for all f , with c independent of f , if and only if�ZX d!(x)[�(B) + �(BxBx)](1�)q�1=q�(B)1=p0 � C for all balls B � X



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 235with C independent of B.It would be nice to �nd a proof which does not require the group struc-ture. If we drop the assumption of a group structure and only keep thehomogeneous space structure, we haveTheorem 4. If 1 < p < q < 1, 0 <  < 1 and � satis�es the doublingcondition then the inequality (� � �) holds if and only if�(B)�1!(B)1=q�(B)1=p0 � C for all balls B � Xwith C independent of B.Also in [SWZ], we prove analogues for fractional maximal functions of\H�ormander type": i.e., de�ne bX = X � [0;1), and for (x; t) 2 bX , letM�(fd�)(x; t) = supr : r�t 1��B(x; r)�1� ZB(x;r) jf(y)j d�(y):Theorem 5. If 1 < p < q < 1 and 0 <  < 1 (X has a group structurenow), then�ZbX M(fd�)(x; t)qd!(x; t)�1=q � c�ZX jf(x)jpd�(x)�1=pholds for all f with c independent of f if and only if�ZbX d!(x; t)��(B) + ��B(xB ; d(xB ; x) + t)��(1�)q�1=q�(B)1=p0 � Cfor all balls B � Rn, with C independent of B.Remarks. (i) If in addition � 2 (DC), then a necessary and su�cient con-dition is �(B)�1!( bB)1=q�(B)1=p0 � cwhere bB = B�[0; r(B)�, and in this case we do not need the group structure.(ii) There are results due to Sergio Zani [Z] of this type for subsetsDu[Dof X � (�1;1).



236 R.L. WHEEDENLecture 2: Poincar�e inequality ([FGuW], [FGaW], [FLW])Let us consider the homogeneous space (RN ; �; dz) where � is a metricand a family fXjgj of �rst order di�erential operators associated with realcontinuous vector �elds (not always smooth).The exact form of the Poincar�e inequality we shall investigate is(P ) � {ZB jf(z)� fB jqu(z) dz�1=q � c � r� {ZB Xj jXjf(z)jpv(z) dz�1=p:with c independent of B and f , where B denotes the �-ball with radiusr = r(B) with respect to the metric � which is naturally generated from thevector �elds and associated integral curves. Here, 1 � p � q <1, u and vare nonnegative locally integrable functions, fB = {RB fu dz, and we denote{ZB f(z)u(z)dz = 1u(B) ZB f(z)u(z)dz:Our methods also yield the Sobolev inequality with fB replaced by 0 in thecase f is supported in B.Applications. (i) For p > 1 Harnack's inequality for positive solutions oftype second order p.d.e.(ii) For p = 1 the isoperimetric inequality jEjN�1 � c � HN�1(@E).History.(i) Standard case:�(z1; z2) = jz1 � z2j and Xj = @@zj ;[FKS] 1 < p <1, u = v 2 Ap, q = q(u; p) > p or p = 2, u = v = j�0j1�2=n,� quasiconformal, q > 2;[CKN] u, v powers of jzj, all p, q;[CW1,2] u, v, p, q related by a dimensional balance condition, v 2 Ap;[DS] u, v certain powers of a strong-A1 weight w; a representation formula;(ii) Other metrics and vector �elds:Non-smooth: [FL], [FS];



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 237Smooth (H�ormander vector �elds): [J], [L], : : : .The �rst part of this talk concerns enlarging the class of weights in thestandard case as well as in a special case of non-smooth vector �elds. Tomotivate things, we �rst return to the standard case and recall the mainresult in [CW1]. For 1 < p < q <1, consider the balance condition(BC) r(B)r(B0)� u(B)u(B0)�1=q � c� v(B)v(B0)�1=pfor all balls B, B0 such that B � B0.In the most classical case, i.e., u = v = 1, this balance amounts to1=q � 1=p� 1=N .The following theorem holds.Theorem. Let 1 < p < q < 1 and u, v be a pair of weight functionssatisfying the balance condition (BC), let u 2 (DC) and v 2 Ap. Then theinequality (P ) holds.(Recall that u is doubling , u 2 (DC), if u(2B) � u(B) for all balls Bwhere 2B denotes the ball concentric with B and with radius 2r(B); v 2 Apif {RB v� {RB v�1=(p�1�p�1 � c for all balls B.)The balance condition (BC) is necessary if u is doubling but v 2 Ap iscertainly not necessary as shown for example by the results of [CKN] or bythe second result of [FKS]: v(z) can be jzj� for arbitrarily large �. Thereare also results in [GW] and [CW3] which allow any u, v that satisfy thebalance condition and for which v=� 2 Apfor some � =Qi jz � aij, �i > 0 (e.g., large).The problem is the method of proof, which deduces the result fromweighted estimates for the fractional integralI1g(z) = ZRN g(�) 1jz � �jN�1 d�;by using the fact thatjf(z)� fB j � cI1(jrf j�B)(z); z 2 B(�B denotes the characteristic function of the set B). The di�culty is thatthe fractional integral results require at least v�1=(p�1) 2 L1loc, which rulesout weights like v(z) = jzj� for large � > 0.



238 R.L. WHEEDENIn [FGuW], we by-pass this di�culty by using a di�erent representation.This allows some uni�cation of earlier results. It leads to new weights evenin the standard case and also applies to non-smooth vector �elds of Grushintype: considerRN = Rn � Rm = fz = (x; y) : x 2 Rn; y 2 Rmg;and vector �elds @@x1 ; : : : ; @@xn ; �(x) @@y1 ; : : : ; �(x) @@ym ;where �(x) � 0 and continuous, but not necessarily di�erentiable. Weassume that � satis�es(RH1) {Zjx�x0j<r �(x) dx � maxjx�x0j<r �(x)and some other conditions to be stated later. A typical example is �(x)= jxj�; � � 0, and the results will be new even when � � 1.Denote jr�f(z)j2 = jrxf(z)j2 + �(x)2jryf(z)j2:De�ne a metric � by means of sub-unit curves, i.e., absolutely continuouscurves (t) in RN so that for all � = (�; �) 2 RN ,( _(t); �)2 � j�j2 + ��(t)�2j�j2;if z1, z2 2 RN , let�(z1; z2) = inffT : 9 sub-unit curve  with (0) = z1 and (T ) = z2g:This is the sort of situation studied in depth in [F]. In particular, the corre-sponding metric balls are comparable to rectangles with fairly simple struc-ture, and the balls are doubling with respect to Lebesgue measure.To state the main result, we must �rst de�ne the class of strong{A1weights in our context. Let w = w(z) 2 A1 = [p>1Ap with respect toLebesgue measure and �-balls. For z1, z2 2 RN , consider the quasi-metric�(z1; z2) = infB : z1;z22B �ZB w(z)�(z)m=(N�1)dz�1=N ;



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 239where B is a �-ball and �(z) = �(x) if z = (x; y). If  : [0; T ] ! RN isa sub-unit curve, its w-length is de�ned by`() = lim infj�j!0 Xi ��(ti+1); (ti)�;where � = ftig is a partition of [0; T ]. De�ne a \distance" d(z1; z2) byd(z1; z2) = inff`() :  is a sub-unit curve connecting z1 and z2g:Then d is a pseudo-metric (d(z1; z2) = 0 may not imply z1 = z2). Ifd(z1; z2) � �(z1; z2);then d is a metric, and we say w is a strong-A1 weight for the metric �.When � � 1, this notion was introduced in [DS].Examples. (a) w(z) � 1,(b) w(z) = �(z; z0)�, � � 0,(c) w(z) = j�0j, � quasiconformal, � � 1.Technical usefulness of strong{A1.Say � � 1 for simplicity. Thend(z; z�) � � ZB(z�;jz�z�j) w � 1m=(N�1)�1=Nby de�nition. It is not hard to see by using the triangle inequality thatDzd(z; z�) � cw(z)1=N ;whereas Dz� ZB(z�;jz�z�j) w�1=Nwill spread onto the surface of the ball B(z�; jz � z�j). An analogous basicfact about quasiconformal maps is thatj�(z)� �(z�)j � � ZB(z�;jz�z�j) j�0j�1=N ;



240 R.L. WHEEDENand of course the derivatives of the right side spread while those of the leftside localize at z.We now state the remaining assumptions on � and w. We assume(i) �(x)n is in strong{A1 with respect to standard Euclidean balls in Rn;(ii) � = 0 at most in a �nite subset of each ball;(iii) if �(x1) = 0, then w(x; y) is bounded as x! x1 uniformly in y for yin any bounded set.In the case n = 1 (m = N � 1), we can replace (ii) by the assumption� > 0 a.e., and (iii) is not needed at all.Finally, Ap(d�) means Ap(RN ; �; d�) for a doubling measure �.Main Theorem. Suppose that 1 � p < q < 1 and that u, v satisfy thebalance condition (BC). If u is doubling and there exists a strong{A1weight w such that vw�(1�1=N) 2 Ap(w1�1=Ndz) then� {ZB jf(z)� fB jqu(z) dz�1=q � c � r(B)� {ZB jr�f(z)jpv(z) dz�1=pfor all metric balls B.Remarks. (i) Note that p = 1 is included. The case q = p is not includedbut there is a separate result for it.(ii) The main point is that any high order zeros of v can be tamed bymultiplication by w�(1�1=N). In the Ap condition, only integrals of v andv�1=(p�1)w� (for � > 0) arise, which is very good.Lecture 3: Half-space estimates for the gradient ([WWi])We consider the followingProblem. Given a function k(x) on Rn with some smoothness, some decayat1, and RRn k(x) dx = 1, let f(x; y) = f �ky(x) where ky(x) = y�nk(x=y),y > 0. We study the problem of determining weights w(x; y) on Rn+1+ andv(x) on Rn so that�ZZRn+1+ jrf(x; y)jqw(x; y) dx dy�1=q � c�ZRn jf(x)jpv(x) dx�1=p;



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 241where r = 
 @@x1 ; : : : ; @@xn ; @@y �.We study the case when 1 < p � q <1. We also usually assume q � 2.Complete proofs will appear in [WWi].There is an analogous problem with the Hardy Hpv norm on the right.If v 2 Ap, these are the same problem. For v � 1, there are completeresults even for p > 0 due to Luecking [L], Shirokov [Sh], and Verbitsky [V].These results can be generalized if v 2 A1 , and so one obtains Lpv resultsif v 2 Ap, 1 < p <1, since then Lpv and Hpv coincide.We want to study the Lpv problem without assuming v 2 Ap or A1.The results depend on the rate of decay of k. If, e.g., k(x)= cn(1 + jxj2)�(n+1)=2, then ky(x) is the Poisson kernel and f(x; y) is thePoisson integral. Then@@xi ky(x) = �cn(n+ 1) xiy(y2 + jxj2)n+32 ;@@yky(x) = cn jxj2 � ny2(y2 + jxj2)n+32 :For �xed y, these have orders jxj�n�2, jxj�n�1 respectively as jxj ! 1.The results are di�erent, and in this note we will only discuss the case ofthe x-derivatives.Reformulation. For any k, by the chain rule, we have@@xi ky(x) = y�1�y(x) ��(x) = @@xi k(x)�;@@y ky(x) = y�1�y(x) ��(x) = �nk(x)� nXi=1 xi @@xi k(x)�:In either case, RRn �(x) dx = 0 (note that RRn ��nk(x) � nP1 xi @@xi k(x)� dx= �n RRn k + nP1 RRn k = 0). So our problem becomes�ZZRn+1+ jy�1�y � f(x)jqw(x; y) dx dy�1=q � c�ZRn jf(x)jpv(x) dx�1=pfor RRn �(x) dx = 0, � smooth with some decay.



242 R.L. WHEEDENOf course, by taking absolute values and replacing � by j�j, we can obtainresults as corollaries of known Carleson type results. Roughly speaking, suchresults (see [SW1], [SWZ], [GGK]) require the following if q > p:�ZZRn+1+ n yM�n�1(jx� x0j+ y + l)M oqw(x; y) dx dy� 1q �ZRn �(x) dx(1 + jx�x0jl )Mp0 � 1p0 � cfor all x0 2 Rn, l > 0, where j�(x)j � (1 + jxj)�M and �(x) = v(x)1�p0 ,1=p+ 1=p0 = 1. There are also su�cient conditions ([SW1], [Z]) for p = q.Our conditions only involve integrating w(x; y) over sets T (Q) of theform T (Q) = f(x; y) : x 2 Q; l(Q)=2 < y < l(Q)g, l(Q) = jQj1=n, where Qis a cube in Rn. Thus T (Q) is only the top half of the usual Carleson box.For example, if v � 1 (� � 1) and f(x; y) is the Poisson integral, thecondition in [SW1] for p = q isZZbQ w(x; y)yp dx dy � cjQj;( bQ = f(x; y) : x 2 Q; 0 < y < l(Q)g), while it will be enough thatZZT (Q) w(x; y)l(Q)p dx dy � cjQj:Clearly, w(x; y) = yp�1 satis�es the second condition but not the �rst.Necessary conditions are di�cult to �nd because of cancellation. How-ever, for the Poisson case, by using the fullr, we can show that the followingis necessary (d�(x; y) = w(x; y) dx dy):j bQj�1��T (Q)�1=q�ZRn �(x) dx�1 + jx�xQjl(Q) �(n+1)p0 �1=p0 � c;where xQ denotes the center of Q.The su�ciency results require strengthening the third factor, i.e., replac-ing the integral involving � by something larger. They are obtained bynoting a connection of the original problem with Littlewood{Paley theory.In fact, the original problem, i.e.,�ZZRn+1+ jy�1�y � f(x)jqd�(x; y)�1=q � c�ZRn jf jpv dx�1=p;



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 243is equivalent by duality to one for the operatorTg(x) = ZZRn+1+ g(t; y)y�1�y(t� x) d�(t; y);namely, is equivalent to�ZRn jTg(x)jp0�(x) dx�1=p0 � c�ZZRn+1+ jg(x; y)jq0d�(x; y)�1=q0 :The formula for Tg is reminiscent of the Calder�on reproducing formula:f(x) = ZZRn+1+ f �  y(t) y(x� t)dt dyy ;for  2 C10 , radial, R  = 0 and1Z0 j b (y�)j2 dyy = 1 for all � 6= 0:Generally speaking, norms of f can be estimated in terms of norms of squarefunctions. This is how Littlewood{Paley theory enters. We now introducethe sort of square function that we will use. A classical square functionassociated with f is the Lusin area integralS(f)2(x) = ZZjt�xj<y jrf(t; y)j2 dtdyyn�1� ZZjt�xj<y jf �  y(t) � y�1j2 dtdyyn�1� 1Xk=�1� ZZjt�xj<2ky�2k jf �  y(t)j2dt dy� 1(2k)n+1� XQ3x 1jT (Q)j ZZT (Q) jf �  y(t)j2dt dy;



244 R.L. WHEEDENwhere fQg is a dyadic grid of cubes Q.Also, since Rn+1+ = SQ T (Q) (disjoint),f(x) =XQ ZZT (Q) f �  y(t) y(x� t)dt dyy =XQ �QbQ(x)where bQ(x) = 1�Q ZZT (Q) f �  y(t) y(x� t)dt dyyand�Q = jQj 12� 1jT (Q)j ZZT (Q) jf �  y(t)j2dtdy�1=2 � �ZZT (Q) jf �  y(t)j2 dt dyy �1=2:The reason for this choice of �Q is to obtain desirable size estimates for bQand rbQ. Note that by using the �rst formula for �Q, the square functionis essentially S(f)(x) = �XQ3x �2QjQj�1=2:The properties of bQ are atom-like:(1) R bQ(x) dx = 0 since R  dx = 0,(2) supp bQ � 3Q since supp � fjxj � 1g,(3) kbQkL2 � C and krbQkL2 � c=l(Q) since kbQkL1 � c=(jQj1=2) andkrbQkL1 � c=(l(Q)jQj1=2) due to the choice of �Q: e.g.,jrbQ(x)j � 1�Q ZZT (Q) jf �  y(t)j cyn+1 dt dyy� c�Q�ZZT (Q) jf �  y(t)j2 dt dyy �1=2�ZZT (Q) dt dyy2n+3�1=2� c � l(Q)�1jQj� 12 by de�nition of �Q:We say f is in \standard form" iff(x) =X�QbQ(x)



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 245for bQ satisfying (1), (2), (3).In our case, writeTg(x) =XQ ZZT (Q) g(t; y)y�1�y(t� x) d�(t; y) =XQ �QbQ(x);where now bQ(x) = 1�Q ZZT (Q) g(t; y)y�1�y(t� x) d�(t; y)and �Q = jQj� 12 l(Q)�1��T (Q)�1=q�ZZT (Q) jg(t; y)jq0d�(t; y)�1=q0 :This choice of �Q guarantees by H�older's inequality thatkbQkL1 � cjQj1=2 ; krbQkL1 � cl(Q)jQj1=2 :Also, R bQ dx = 0 since R � dx = 0. But the support of bQ is not generallycompact.If we assume that � is supported in fjxj < 1g, then supp(bQ) � 3Q, andit is natural to hope that we can estimate norms of Tg by norms of eS(Tg)de�ned by eS(Tg)(x) = �X �2QjQj� eQ(x)�1=2;where eQ = 3Q and �Q is as above.For weighted norms there are sharp results of this type due to [CWiWo]and [Wi]. These help us prove the following result. We use the notation�(Q; �) = ZQ �(x) log� �e+ �(x)�Q � dx for � > 0and �Q = 1jQj ZQ �(x) dx (Q may not be dyadic):



246 R.L. WHEEDENTheorem 1. Let � 2 C10 (Rn), R � = 0 and supp� � fjxj < 1g. Let1 < p � q <1 and q � 2. If � > p0=2 andj bQj�1��T (Q)�1=q�( eQ; �)1=p0 � c;then �ZZRn+1+ jy�1�y � f(x)jqd�(x; y)�1=q � C�ZRn jf(x)jpv(x) dx�1=p:To obtain results when � does not have compact support, we make thefollowing de�nition.De�nition. Let �, � be weights and 1 < r <1. We say (�; �) is an r-pairif �(x) � � (x) a.e. and if khkLr� � keS(h)kLr�for all h in standard form.Examples.(1) If � 2 A1, then (�;C�) is an r-pair for C = C�;r.(2) If k > r=2 then (�;CMk�) is an r-pair for C = Ck;n andMk is k-folditeration of Hardy{Littlewood maximal function ([Wi]).We will state a better result below. First,Theorem 2. Let 1 < p � q < 1 and q � 2. Let � 2 C1, R � = 0 andj�(x)j � (1+ jxj)�M , jr�(x)j � (1+ jxj)�M�1 for some integer M � n+2.If (�; � ) is a p0-pair and ifj bQj�1��T (Q)�1=q�ZRn �(x)sQ(x)p0=q0dx�1=p0 � c;where sQ(x) = log(e+ jx�xQjl(Q) )�1 + jx�xQjl(Q) �M ;then �ZZRn+1+ jy�1�y � f(x)jqd�(x; y)�1=q � C�ZRn jf(x)jpv(x) dx�1=p:



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 247Note that the restrictionM � n+2 allows the x-derivatives of the Poissonkernel but not the y-derivative.The next result gives some information about r-pairs.Given �(x) and � � 0, letW��(x) = supQ3x 1jQj ZQ �(t) log� �e+ �(t)�Q � dt:Note W0� = M�, the Hardy{Littlewood maximal function. It is a conse-quence of [St] that Wk� � ck;nMk+1� for k = 1, 2, : : : , where Mk+1 is the(k + 1)-fold iteration of M .Theorem 3. Let r � 2. If �+ 1 > r=2 then (�; c�;nW��) is an r-pair.In particular, if k is an integer greater than r=2, then (�; cWk�1�) is anr-pair, and so (�; cMk�) is an r-pair. This last statement was proved in[Wi] and is also true for 1 < r < 2 with k = 1. In fact, Wilson showed that(�; � ) is an r-pair if there exists an � > r=2 so thatZQ �(x) log� �e+ �(x)�Q � dx � cZQ � (x) dxfor all Q. Thus, it is enough to show thatZQ �(x) log�+1 �e+ �(x)�Q � dx � c ZQ W��(x) dx:This was also proved in [GI] if � is an integer (� = 1). The proofs aredi�erent.If we combine the last two theorems and remember that r = p0, we getthe estimate ky�1�y � f(x)kLqd�(Rn+1+ ) � ckfkLpv(Rn)for � with R � = 0, j�(x)j � c(1 + jxj)�M , jr�(x)j � c(1 + jxj)�M�1,M � n+ 2 iffor 2 < p � q <1:j bQj�1��T (Q)�1=q�ZRn M�(x)sQ(x)p0=q0dx�1=p0 � c;



248 R.L. WHEEDENfor 1 < p � 2 � q <1:j bQj�1��T (Q)�1=q�ZRn W��(x)sQ(x)p0=q0dx�1=p0 � cfor some � > p0=2� 1.Sketch of the proof of Theorem 2. Assume j�(x)j � c(1 + jxj)�M andjr�(x)j � c(1 + jxj)�M�1 for an integer M � n + 2. This includes thex-derivatives of the Poisson kernel. Also assume that we know Theorem 1,i.e., the compactly supported case. The proof involves a reduction to thecompactly supported case by using the following (modi�ed) theorem of [U].Write M = (n+ 2) +m for m = 0; 1; : : : .Lemma 1. Let m = 0; 1; : : : and(i) j�(x)j+ jr�(x)j � c(1 + jxj)�n�2�m,(ii) RRn �(x)P (x) dx = 0 for every polynomial P with degree � m+ 1.Then there are functions fvi(x)g1i=0 so that�(x) = 1Xi=0 2�i(m+2)(vi)2i(x) = 1Xi=0 2�i(n+2+m)vi� x2i �with(a) supp(vi) � fjxj � 1g,(b) supp(vi) � fc � jxj � 1g, 0 < c < 1, if i 6= 0,(c) kvik1 � C,(d) RRn vi(x)P (x) dx = 0 if deg(P ) � m+ 1.In [U], the stronger hypothesis that 0 does not belong to supp(b�) is madebut not required in the proof. Also, (b) is not stated there but follows fromthe construction.Our � has enough decay but not enough moments vanish. This is easyto �x. Pick �1 2 C10 with support in fjxj � 1g so that R �1P = R �P ifdeg(P ) � m+ 1. Write � = �1 + (�� �1):Then� �1 satis�es R �1 = R � = 0 and has compact support so can betreated by Theorem 1.� �� �1 has lots of vanishing moments and the same decay as �.



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 249Thus, by replacing � by � � �1, we may assume that � satis�es thehypothesis of Lemma 1 andjr�(x)j � c(1 + jxj)�n�m�3� = c(1 + jxj)�M�1�:Recall that Tg(x) = RRRn+1+ g(t; �)��1��(t � x) d�(t; �) and we want toshow that �ZRn jTgjp0� dx�1=p0 � c�ZZRn+1+ jgjq0d�(x; y)�1=q0 :Since (�; �) is a p0-pair, the left side is less than or equal to�ZRn jeS(Tg)jp0� dx�1=p0 ;where eS(Tg)(x) = �XeQ3x �(Q)2jQj �1=2;�(Q) = �ZZT (Q) jTg �  y(x)j2 dx dyy �1=2;and  is as in the Calder�on reproducing formula. By de�nition of T ,jTg �  y(x)j � ZZRn+1+ jg(t; �)j��1j y � ��(t� x)j d�(t; �):We must estimate  y � �� .Lemma 2. For �,  as abovej( y � ��)(x)j � c8>><>>: y�m+2� + jxjn+m+3 if � � y or if � � y and jxj � 5y�m+2 log(e+ y� )yn+m+2 if � � y and jxj < 5y:This uses [U] Lemma 1 and involves some computation.



250 R.L. WHEEDENNow writejTg �  y(x)j � ZZRn+1+ jg(t; �)j��1( y � ��)(t� x)j d�(t; �)=XQ ZZT (Q) : : : :Let Q0 be a �xed dyadic cube and let (x; y) 2 T (Q0). The sum isXQ : Q�fQ0+ XQ : Q6�fQ0 :Think of y as l(Q0), and � as l(Q). Also, x 2 Q0 and t 2 Q, so if Q � fQ0then both � � y and jx� tj < 5y. This corresponds to the second estimatein Lemma 2. Similarly, if Q 6� fQ0 then either Q is too big or Q is not toobig but centered far away from Q0. This corresponds to the two possibilitiesin the �rst estimate.We get sup(x;y)2T (Q0) jTg �  y(x)j�c XQ : Q�fQ0 h ZZT (Q) jgj d�in l(Q)m+1l(Q0)n+m+2 log �e+ l(Q0)l(Q) �o+ c XQ : Q6�fQ0 h ZZT (Q) jgj d�in l(Q0)l(Q)m+1�l(Q) + jxQ � xQ0 j�n+m+3o= I + II:We will consider only I , which is easier than II . Since�(Q0) = �ZZT (Q0) jTg �  y(x)j2 dx dyy �1=2;the contribution of I to �(Q0) is justI � jQ0j1=2 = jQ0j1=2X a(Q0; Q)G(Q);



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 251where G(Q) = ZZT (Q) jgj d�and a(Q0;Q) = l(Q)m+1l(Q0)n+m+2 log�e+ l(Q0)l(Q) � if Q � fQ0(and a(Q0; Q) = 0 otherwise).The corresponding part ofeS(Tg)(x) = � XfQ03x �(Q0)2jQ0j �1=2is h XfQ03x�XQ a(Q0;Q)G(Q)�2i1=2:Since we want to show thatkeS(Tg)kLp0� � c�ZZRn+1+ jgjq0d��1=q0and since (by H�older's inequality)G(Q)q0��T (Q)�1�q0 � ZZT (Q) jgjq0d�;it is enough to show that�ZRn � XfQ03x hXQ a(Q0; Q)G(Q)i2�p0=2� (x) dx�1=p0�c�XQ G(Q)q0��T (Q)�1�q0�1=q0 :The argument now depends on whether p � 2 or p > 2. Consider 1 <p � 2 (only). Use duality to estimate the left side: for h(x) 2 L(p0=2)0� withnorm less than or equal to 1, consider the inequality�XQ0 hXQ a(Q0; Q)G(Q)i2 ZfQ0 h� dx�1=2 � c�XQ G(Q)q0��T (Q)�1�q0�1=q0 :



252 R.L. WHEEDENThis is a sequence space problem.Let Y (Q) = G(Q)=j bQj;A(Q0; Q) = a(Q0; Q)j bQj;�(Q0) = ZfQ0 h� dx;�(Q) = j bQjq0��T (Q)�1�q0 :Question.�XQ0 hXQ A(Q0; Q)Y (Q)i2�(Q0)�1=2 � c�XQ Y (Q)q0�(Q)�1=q0 ?I.e., does the kernel A(Q0; Q) maplq0��(Q)�! l2��(Q)� ?Recall that q0 � 2. By the Riesz{Thorin theorem, it is enough to show thatl1 ! l1and l1��(Q)�! l2=q0��(Q)�since 1=2 = (1� t)=1+ t=(2=q0) means 1=q0 = (1� t)=1+ t=1.l1 ! l1: We must show thatXQ A(Q0; Q) � c for every Q0;or, by de�nition of A, thatXQ : Q�fQ0 l(Q)m+1l(Q0)n+m+2 log�e+ l(Q0)l(Q) �l(Q)n+1 � c:



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 253The sum is XQ : Q�fQ0 � l(Q)l(Q0)�n+m+2 log �e+ l(Q)0l(Q) ��c XQ : Q�fQ0 � jQjjQ0j�1+� for some � > 0 since n+m+ 2 > n�c by a standard argument:l1 ! l2=q0 : By Minkowski's inequality,�XQ0 hXQ A(Q0; Q)Y (Q)i2=q0�(Q0)�q0=2�XQ hXQ0 A(Q0; Q)2=q0�(Q0)iq0=2Y (Q);so it is enough to show thathXQ0 A(Q0;Q)2=q0�(Q0)iq0=2 � c�(Q) for every Q:We will use the fact that for �, � > 0,(�) Xk�j k�e�k� � c�;�j�e�j� ; j � 1:WriteXQ0 A(Q0; Q)2=q0�(Q)= XQ0 : Q�fQ0 � l(Q)l(Q0)�(n+m+2) 2q0 log2=q0 �e+ l(Q0)l(Q) �ZfQ0 h� dx=ZRn n XQ0 : Q�fQ0 � l(Q)l(Q0)�(n+m+2) 2q0 log2=q0 �e+ l(Q0)l(Q) ��fQ0(x)oh(x)� (x) dx:In the inner sum, the cubes Q0 satisfy jx�xQj � c l(Q0) and l(Q) � c l(Q0),i.e., l(Q0) � c[jx� xQj+ l(Q)].



254 R.L. WHEEDENBy (�), we get at mostc ZRn � l(Q)jx� xQj+ l(Q)�(n+m+2) 2q0 log2=q0 �e+ jx� xQjl(Q) �h(x)�(x) dx=c ZRn sQ(x)2=q0h(x)� (x) dx by de�nition of sQ:Now use H�older's inequality with exponents p0=2 and (p0=2)0, and recall thatkhkL(p0=2)0� � 1. We get at mostc�ZRn sQ(x)p0=q0� (x) dx�2=p0 � c� j bQj��T (Q)�1=q �2 by hypothesis:Raise this to the power q0=2 and note that the result equals c�(Q) as desired.Lecture 4: Operators related to starlike sets ([CWaW], [W2])We shall study weighted norm inequalities for certain generalizations ofthe Riesz fractional integral operators and associated maximal operators.We employ the idea that the geometry associated with the operators shouldbe reected in the conditions imposed on the weights.Model case. One such operator is the following: on Rn, n > 1, de�neI�;�f(x) = f � k�;�(x);where k�;�(x) = 1jxjn�1��jxnj1�� ;for x = (x1; : : : ; xn�1; xn). Here �� < � < n� 1 and 0 < � < 1.Putting S = fx : k�;�(x) > 1g we can easily see that S depends only on = (n� 1� �)=(1� �); we can write S = S , 0 <  <1.Rewritek�;�(x) = 1jxjn�1��jxnj1�� = (jxnj=jxj)��1jxjn�(�+�) = 
(x)jxjn�� ;where � = � + �, 0 < � < n and 
(x) = (jxnj=jxj)��1. The function 
(x)is nonnegative, homogeneous of degree 0 and unbounded.



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 255In general, let I
;�f = f � 
(x)jxjn��and consider the setS = fx : 
(x)jxjn�� > 1g = fx : jxj < 
(x)1=(n��)g:It is starlike about the origin. In polar coordinates, i.e. x = r� with r = jxjand � = x=jxj 2 � := fx : jxj = 1g, let�(�) = 
(�)1=(n��):Then S = fx = r� : 0 � r � �(�); � 2 �g:Note that jSj = ZS dx = Z� �(�)Z0 rn�1dr d� = 1n Z� �(�)nd� <1if and only if � 2 Ln(�) (i.e. 
 2 Ln=(n��)(�)).Denote k(x) = 
(x)=jxjn��. Then jfk > 1gj = jSj, and for � > 0,jfk > �gj = jfr� : 0 � r < ��1=(n��)�(�)gj = ��n=(n��)jSjby dilation.Thus, if jSj <1, thenjfk > �gj � C��n=(n��);and it follows from known results thatI
;� : Lp ! Lq ; if 1q = 1p � �n; 1 < p < n�;i.e., I
;� satis�es the same unweighted estimates as the usual Riesz fractionalintegral. (The restriction jSj < 1 in the model case �(�) = j�nj�1=(+1)amounts to  + 1 > n, or � > �=(n� 1).)



256 R.L. WHEEDENIf E is a set in Rn, t > 0, then we denotetE = ftx : x 2 Eg;AE;tf(x) = t�n ZtE f(x� y) dy = ZE f(x� ty) dy:We can prove by the use of polar coordinates thatI
;�f(x) = (n� �) 1Z0 [t�AS;tf(x)]dtt :Now it is natural to de�ne the maximal operator (centered at x)MS;�f(x) = supt>0 t�AS;tf(x) = supt>0 t��n Zx�tS f(y) dy; f � 0:For the maximal operator, we allow � = 0: 0 � � < n.In the case � = 0 and jSj < 1, there are unweighted estimates forMS;0 due to C. P. Calder�on [Ca] as well as M. Christ [Ch] and M. Christand J. L. Rubio de Francia [ChR]. There are some weighted results due toD. Watson [Wa1,2].For � > 0 we have the relationMS;�f(x) � c � I
;�f(x):In fact, if r < t then rS � tS by the starlike nature, soAS;rf(x) = r�n ZrS f(x� y) dy � r�ntn � t�n ZtS f(x� y) dy= � tr�nAS;tf(x);and therefore by using the representation above, for all r > 0,I
;�f(x) � (n� �) 2rZr t� � � tr��nAS;rf(x) � dtt� cr�AS;rf(x):



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 257Now take the supremum over all r > 0.We de�ne the uncentered maximal operator (by a set E):MS;E;�f(x) = supt;zt>0;z2Rnx2z�tE t��n Zz�tS f:If E is empty, this reduces to MS;�f . Typically, E would be the centralportion of S. The results for MS;� and MS;E;� are very di�erent. In thecase � = 0, MS;E;� (with a di�erent normalization) was studied by A.Cordoba [Cor].Some Results. Consider �rst the model case S = S . There is a classof rectangles naturally associated with S. For a � 1, consider the lineartransformation �a de�ned by�a = (ax1; : : : ; axn�1; a�xn) when x = (x1; : : : ; xn);and the rectangle Ra = �aQ1 where Q1 is the unit cube with center 0. Notethat jRaj = an�1� ; jSj <1 if n� 1�  < 0. DenoteB(Ra) = fz + tRa : z 2 Rn; t > 0gthe class of all translates and dilates of Ra.Theorem 1. Let 1 � p � q <1, 0 � � < n, and w, v be weights.(I) If the weak type estimatew(fx : MS;�f(x) > �g) � �BkfkLpv� �qholds, then there exists a constant c > 0 such that for all a � 1 and allR 2 B(Ra),jRj�n�1�ZR w� 1q �ZR v� 1p�1� 1p0 � cBjRaj �n�1 if p > 1jRj�n�1�ZR w� 1q ess supx2R 1v(x) � cBjRaj �n�1 if p = 1:



258 R.L. WHEEDEN(II) Conversely, if the last condition holds with \cB" replaced by a mono-tone function C(a) which satis�es1Z1 C(a)daa = b if q > 11Z1 C(a)�1 + log+C(a)�daa = b if p = q = 1;then the weak type estimate holds with B � cb, for some constant c inde-pendent of w, v and f .(III) If 1 < p � q <1, the strong type estimatekMS;�fkLqw � BkfkLpvholds if there exists r > 1 such thatjRj �n� 1p�ZR w� 1q � 1jRj ZR v� rp�1� 1rp0 � C(a)jRaj�n�1for all a � 1 and all R 2 B(Ra), provided R11 C(a) daa <1.There are also both weak and strong results for I�;�, e.g.Theorem 2. Let 1 < p � q <1. Then the strong type estimatekI�;�fkLpw � CkfkLpvholds if 0 < � < 1, �� < � < n � 1,  = (n � 1 � �)=(1 � �) and thereexists r > 1 such thatjRj �n� 1p+ 1q� 1jRj ZR wr� 1qr� 1jRj ZR v� rp�1� 1p0r � C(a)jRaj �n�1for all R 2 B(Ra) and all a � 1, and with C(a) the same as in Theorem 1.Remark 1. The conditions on the weights can be rephrased in terms of cubesQ instead of rectangles R, but with altered weights. For example, de�ning�aw(x) = (det �a)w(�ax) = jRajw(�ax);



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 259the condition just above for strong type can be written asjQj �n� 1p+ 1q� 1jQj ZQ (�aw)r� 1qr� 1jQj ZQ (�av)� rp�1� 1p0r � C(a)jRaj�1:In the case p < q, the condition(�)jQj�� �n�1��ZRn �aw(x) � sQ(x)qdx� 1q�ZRn ��av(x)�� 1p�1 � sQ(x)p0dx� 1p0� C(a)jRaj�1;is su�cient, where 1R1 C(a)daa < 1 and sQ(x) = (jQj1=n + jx � xQj)��n(here xQ denotes the center of Q), and the same condition, but with C(a)independent of a, is necessary.Remark 2 (stronger necessary condition). In the earlier condition (�), if wechange the variable, x = ��1a y, then (�) becomesjQj1��n�ZRn w(y)sQ(��1a y)qdy� 1q �ZRn v(y)� 1p�1 sQ(��1a y)p0dy� 1p0 � Ca:However, one can show thatsQ(��1a y) � c~sR(y); R = �aQ;and where if R = I � J (where I is a cube in Rn�1 and J is an interval inR1), then~sR(y) = 1(jI j 1n�1 + jy � yRj)n�1��(jJ j+ jyn � yR;nj)1�� :The corresponding stronger condition (j��1a Rj = jQj)� jRjjRaj�1��n�ZRn w ~sqRdy� 1q�ZRn v� 1p�1 ~sp0Rdy� 1p0 � Cfor R 2 B(Ra), a � 1, is still necessary. But any rectangle R of the formI � J with I a cube in Rn�1 and J an interval in R1 with jI j 1n�1 � jJ jbelongs to B(Ra) for some a � 1. Moreover, thenjRjjRaj = jRj� jJ jjI j1=(n�1)�� +1�n+1 :



260 R.L. WHEEDENThus, the condition can be rewritten in terms of a general R of this type,with a factor involving the eccentricity. Could this be su�cient if q > p?Remark 3. One can �nd conditions involving only cubes or balls and theoriginal weights, but they are not very sharp. Here is one for � = 0:kMS;0fkLpw � ckfkLpwif 1 < p <1,  + 1 > n, and eitherw 2 Ap(1� n+1 ) if p(1� n+1 ) > 1or w 2 Ap0(1� n+1 ) if p0(1� n+1 ) > 1:The o�-centered function.De�ne MS;Q1;�f(x) = supt;zt>0;z2Rnx2z+tQ1 t��n Zz+tS f:This amounts to taking the sup over all regions which contain x in theircentral portions but not necessarily as their center.De�ne ��ax = (ax1; : : : ; axn�1; xn) and R�a = ��aQ1. Note R�a is the small-est rectangle which contains both Ra and Q1. Consider pairs (R;R�) whichare joint translates and dilates of (Ra; R�a).Theorem 3. Let 1 � p � q <1, 0 � � < n. If the weak type estimatew(fMS;Q1;�f > �g) � �BkfkLpv� �qholds, then jRj�n�1� ZR� w� 1q ZR v� 1p�1 � cBjRaj�n�1 if p > 1;jRj �n�1�ZR� w� 1q ess supx2R 1v(x) � cBjRaj�n�1 if p = 1;for all a � 1 and all pairs (R;R�) with R 2 B(Ra). Conversely, if thecondition holds with cB replaced by C(a) (as in Theorem 1), then the weaktype estimate holds.Remark. The behaviors of the centered and o�-centered operators are verydi�erent, even for unweighted results: if w = v = 1, one needs  + 1 > n



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 261and 1=q = 1=p� �=n for either the centered or o�-centered operators, andalso 1 < p < n=�for centered operator to be of strong type; for the o�-centered operator thecondition p �  � (n� 1)�1� �n� (> 1)is necessary to be of weak type, while the conditionp >  � (n� 1)�1� �n�is su�cient.Theorem 4. If 1 < p � q <1, the o�-centered maximal function satis�esthe strong type estimatekMS;Q1;�fkLqw � BkfkLpvif there exists r > 1 such thatjRj �n� 1p� ZR� w� 1q � 1jRj ZR v� rp�1� 1rp0 � C(a)jRaj�n�1with C(a) as in Theorem 1.The following result used in the proof of Theorem 4 may be of interestin itself.Consider any �xed rectangle (e.g., Ra) and let B be the family of all itstranslates and dilates. To each R 2 B associate a set R� (not necessarilya rectangle) and assume thatR1; R2 2 B and R1 � R2 ) R�1 � R�2:De�ne M�f(x) = supR2BR�3x 1jRj1�� ZR f; 0 � � < 1:



262 R.L. WHEEDENTheorem 5. Let 1 < p � q <1 and 0 � � < 1. If there exists r > 1 suchthat jRj�� 1p� ZR� w� 1q � 1jRj ZR v� rp�1� 1rp0 � c1with c1 independent of R;R�, thenkM�fkLqw � c2kfkLpvwith c2 = cc1 and c independent of B, f .Remark. In case R = R� = cube, this was proved by C. Perez [P2]. Theproblem is to �nd a necessary and su�cient condition when q > p.Results for more general starlike sets. If S is starlike around 0, thenthere exist rectangles fRjg1j=1 satisfying(1) Rj contains 0 on its major axis,(2) S � Sj Rj ,(3) Pj jRj j � C jSj.If S is also open then in addition(5) there exists c > 0 such that cRj � S.Given a rectangle R containing 0, we can associate a linear transformation�R with det �R = jRj and R = �RQR where QR is a cube of edgelength 1containing 0. Let �Rw(x) = (det �R)w(�Rx):Here is a typical result, analogous to the earlier strong type estimates forI�;� .Theorem 6. Let 0 < � < n, 
 � 0 be homogeneous of degree 0, S be thestarlike set corresponding to r = �(�) for �(�) = 
(�)1=(n��), and suppose1 < p � q <1.(a) Necessity: If S is open and symmetric about 0 and ifkI
;�fkLqw � BkfkLpv ;then for every rectangle R � S with center 0 and every cube Q (not relatedto R) jQj1� �n�ZRn (�Rw)sqQdx� 1q �ZRn (�Rv)� 1p�1 sp0Qdx� 1p0 � cBjRj :



POINCAR�E{SOBOLEV INEQUALITIES, MAXIMAL FUNCTIONS 263(b) Su�ciency: If S is starlike and fRjg is a cover satisfying (1), (2), (3)and there exists r > 1 such that for all cubes QjQj �n� 1p+ 1q � 1jQj ZQ (�Rjw)rdx� 1qr � 1jQj ZQ (�Rjv)� rp�1 dx� 1p0r � CjjRj jwith Pj Cj <1, then the strong type estimate holds.(c) If p < q and if for all cubes QjQj1��n�ZRn (�Rjw)sqQdx� 1q �ZRn (�Rjv)� 1p�1 sp0Qdx� 1p0 � CjjRj jwith Pj Cj <1, then the strong type estimate holds.References[A] D. R. Adams, A trace inequality for generalized potentials, Studia Math. 48(1973), 99{105.[Ca] C. P. Calder�on, Di�erentiation through starlike sets in Rn, Studia Math. 48(1973), 1{13.[Ch] M. Christ, Weak type (1; 1) bounds for rough operators, Ann. of Math. 128(1988), 19{42.[ChR] M. Christ and J. L. Rubio de Francia, Weak type (1; 1) bounds for roughoperators, II, Invent. Math. 93 (1988), 225{237.[CKN] L. Ca�arelli, R. Kohn and L. Nirenberg, First order interpolation inequalitieswith weights, Compositio Math. 53 (1984), 259{275.[Cor] A. C�ordoba, Maximal functions, covering lemmas and Fourier multipliers,Proc. Sympos. Pure Math, vol. 35, Amer. Math. Soc., 1979, p. 29{50.[CW1] S. Chanillo and R. L. Wheeden, Weighted Poincar�e and Sobolev inequalitiesand estimates for weighted Peano maximal functions, Amer. J. Math. 107(1985), 1191{1226.[CW2] , Lp estimates for fractional integrals and Sobolev inequalities withapplications to Schr�odinger operators, Comm. Partial Di�erential Equations10 (1985), 1077{1116.[CW3] , Poincar�e inequalities for a class of non-Ap weights, Indiana Univ.Math. J. 41 (1992), 605{623.[CWaW] S. Chanillo, D. K. Watson and R. L. Wheeden, Some integral and maximaloperators related to starlike sets, Studia Math. 107 (1993), 223{255.[CWiWo] S. Y. A. Chang, J. M. Wilson and T. H. Wol�, Some weighted norm inequalitiesconcerning the Schr�odinger operators, Comment. Math. Helv. 60 (1985), 217{246.
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