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POINCARE-SOBOLEV AND ISOPERIMETRIC
INEQUALITIES, MAXIMAL FUNCTIONS, AND
HALF-SPACE ESTIMATES FOR THE GRADIENT

RicHARD L. WHEEDEN

At the conference I gave four lectures. The most detailed part of the
material below is related to Lecture 3 which concerns joint work with Prof.
Michael Wilson about half-space estimates for the gradient [WWi]. The
other three lectures that I gave were about papers that are already pub-
lished or in press. For the sake of completeness, their surveys are presented
here (see the references at the end of this article). In addition, related to
Lecture 2, the paper [FLW] concerning Poincaré’s inequality for vector fields
of Hérmander type now exists in preprint form.

Lecture 1: FRACTIONAL MAXIMAL FUNCTIONS ([W1], [SWZ])

Consider the fractional mazimal function on R™,

1
M f(z) = B:SliIéBWB/U(y”dy,

where B denotes a ball in R”, 0 < a < n. The problem is to characterize
the weights in the inequality

([ es@rute i) s o [Is@pew )

or (in norms)

(%) 1Mo f|

re <cllfllze,

where 1 < p < ¢ < 00, ¢ is a positive constant independent of the function
f, and v, w are weight (measurable and a.e. nonnegative) functions.
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232 R.L. WHEEDEN

History. (1) D.R. Adams (1973, [A]) proved that a necessary and sufficient
condition for the validity of (%), when v(z) =1, ¢ > p, a < n/p, is

/wdx < c|B|(%_%)q for all balls B C R".
B

(2) B. Muckenhoupt and R.L. Wheeden (1974, [MW]) showed that under
the assumptions 1/¢ = 1/p — a/n, a < n/p, w = v9/?, a necessary and
sufficient condition for () to hold is

zl(/w)l/q(/v_;j)q/p’ <c for all balls B C R",

B B

|B

Le., vU/? € Ay (1/p+1/p =1).
(3) E.T. Sawyer (1982, [S]) found a condition, namely,

1/ 1/
(/Ma(XQvfp%l)qw dl“) < c(/vip%ldx) " for all cubes Q CR",
Q Q

which is necessary and sufficient for (x) to be valid provided p < g.
The following characterization holds for p < ¢ (1993, [W1])

Theorem 1. Let 1 < p < ¢ < oo and 0 < a < n. Then (*) holds if and
only if v, w satisfy

(%) (/ (IB|/n f|(j)_di3|(na>q)l/q <Zv(w)1)lldx>l/p’ <c

R

for all balls B C R™, where x g is the center of B and c is a positive constant
independent of B.

Remark. (1) We can replace balls by cubes.

(2) In case the weight ¢ = v~/ (P=1) satisfies the reverse doubling condi-
tion, i.e.,

(RD) 38,0>1 suchthat o(0B)> po(B) for all balls B C R"
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(where 0B = {z: |zt —zg| < 6r(B) = [z o( ) then the condition
is equivalent to the condition

(A3,) |B|%71w(3)1/q0(3)1/p1 < C for all balls B C R™.

This condition is well-known to be necessary and sufficient for the weak-type
estimate

suptw({z: Mo f(x) >t < e fllz,
t>0

even for p = q.

The fractional maximal function was used in [MW] to help control the
Riesz fractional integral
/ fly — dy,
J yl

but it turns out that I, arises (or can be made to arise) in the proof of
Theorem 1. In fact, the proof shows that the dual weak type behavior of I,
is decisive for M,. The condition on the weights in Theorem 1 is essentially
the same as that given in [GaK] in order to characterize the weights for
which there is the dual weak-type estimate

supto({v: If( ) > tHhtr < Il

—1/(qa— 1)

1
where 0 = v 7-1, 1 < p < ¢ < 00.

By combining these results with a strong type characterization [S] for the
boundedness of I, we get

Theorem 2. For 1 < p < g < oo, we have
(xx) I,: LY — LY

(i.e., in norms, ||I, f|
if both conditions

if and only

My: LV — LI
and .
M- Li—l/(q—l - Lp—l/ (p—1)
hold.

Of course, the operator I, is self-adjoint, so (%) is equivalent to
I,: LY — LP

w—1/(p=1) p=1/(p=1)"
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More general context.

Let us consider a homogeneous space (X, d, ) where d is a quasi-metric
and p is a measure in the space X that satisfy

(1) d(z,y) =0 if and only if z =y,
(2) d(z,y) = d(y,x) for all x,y € X,

(3) there is a constant K > 0 such that d(z,y) < K[d(z,z) + d(z,y)], for
all x,y,z € X,

(4) there is a constant C' > 0 such that p(B(z,2r)) < Cu(B(z,r)),
where B(z,r) = {y: d(z,y) < r} (such a measure p is said to satisfy the
doubling condition, and we write u € (DC)).

We also assume that B(x, R) \ B(z,r) is not empty for 0 <7 < R < o
and that X has a group structure with respect to “4” such that

(5) d(z + 2,y + 2) =d(z,y),
(6) u(—B + z) = u(B) where —B = {x: —z € B}.

It follows easily from (5), (6) that d(0, —z) = d(0,z) and u(—B) = u(B).
This is the sort of situation considered in [SW2], and we will use many ideas
from there.

Let
B: z€

My(fir) = sup — [ Il doly)
B

where 0 < 7 < 1 and do is a Borel measure and the supremum is taken over
all balls B C R.

Define By, = B(x,d(x,y)) and note that p(Bgy) ~ p1(Byg) since p €
(DC).

The main result is

Theorem 3. If 1 <p<g<ooand 0 <~ <1, then

(% % %) <)Z|M7(fda)|qdw>1/q < c<}(/ |f|Pda>1/p

holds for all f, with ¢ independent of f, if and only if

1/q
</[ BT dz";x) )](M)q) o(B)/? < ¢ for all balls BC X
’ 1By 5
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with C' independent of B.

It would be nice to find a proof which does not require the group struc-
ture. If we drop the assumption of a group structure and only keep the
homogeneous space structure, we have

Theorem 4. If 1 < p < ¢ < o0, 0 < v <1 and o satisfies the doubling
condition then the inequality (% * %) holds if and only if

w(B) " w(B)e(B)Y < C  for all balls BC X

with C' independent of B.

Also in [SWZ], we prove analogues for fractional maximal functions of
“Hoérmander type”: i.e., define X = X x [0,00), and for (z,t) € X, let

M, (fdo)(,t) = sup ——- / 1F()|dor(y).

ri et u(B(“))l_vB(w r)

Theorem 5. If 1 < p < ¢ < oo and 0 <y <1 (X has a group structure
now), then

/M (fdo)(z,t)%dw(zx,t) t /|f )|Pdo(x

holds for all f with ¢ independent of f if and only if

(/ dw(@,?) )Uqa(B)”p' <c
[4(B) + n(Blag, d(zp,z) +1)] """

for all balls B C R™, with C independent of B.

Remarks. (i) If in addition o € (DC), then a necessary and sufficient con-
dition is R ,
w(B)tw(B)Yig(B)MP < ¢

where B = Bx [0, ’I“(B)) , and in this case we do not need the group structure.

(ii) There are results due to Sergio Zani [Z] of this type for subsets D, UD
of X x (—o0,00).
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Lecture 2: POINCARE INEQUALITY ([FGuW], [FGaW], [FLW])

Let us consider the homogeneous space (RY,p,dz) where p is a metric
and a family {X,}; of first order differential operators associated with real
continuous vector fields (not always smooth).

The exact form of the Poincaré inequality we shall investigate is
1/q 1/p
) (1o -feruea)” <o [P )"
B B

with ¢ independent of B and f, where B denotes the p-ball with radius
r = r(B) with respect to the metric p which is naturally generated from the
vector fields and associated integral curves. Here, 1 < p < ¢ < 00, v and v
are nonnegative locally integrable functions, fp = f5 fudz, and we denote

1
i = o [ e
B B

Our methods also yield the Sobolev inequality with fg replaced by 0 in the
case f is supported in B.

Applications. (i) For p > 1 Harnack’s inequality for positive solutions of
type second order p.d.e.

(ii) For p =1 the isoperimetric inequality |E|N ™! < c¢-Hy_1(0E).

History.
(i) Standard case:

p(z1,22) = |21 — 22| and X, = P
j

[FKS] 1 <p<oo,u=v€ Ay, q=q(u,p) >porp=2,u=0v=I¢"2"
¢ quasiconformal, g > 2;

[CKN] u, v powers of |z|, all p, g;

[CW1,2] u, v, p, g related by a dimensional balance condition, v € A,;
[DS] u, v certain powers of a strong-A., weight w; a representation formula;

(ii) Other metrics and vector fields:

Non-smooth: [FL], [FS];
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Smooth (Hérmander vector fields): [J], [L], ... .

The first part of this talk concerns enlarging the class of weights in the
standard case as well as in a special case of non-smooth vector fields. To
motivate things, we first return to the standard case and recall the main
result in [CW1]. For 1 < p < ¢ < 00, consider the balance condition

r(B) ; u(B) \1/4 v(B) \1/p
(BC) T(B()) (U(Bo)) S C(U(Bo)>
for all balls B, By such that B C By.

In the most classical case, i.e., v = v = 1, this balance amounts to
1/¢>1/p—1/N.

The following theorem holds.

Theorem. Let 1 < p < q < oo and u, v be a pair of weight functions
satisfying the balance condition (BC), let w € (DC') and v € A,. Then the
inequality (P) holds.

(Recall that w is doubling, v € (DC), if u(2B) < w(B) for all balls B
where 2B denotes the ball concentric with B and with radius 2r(B); v € A,

it f,v(fz0 /@) < ¢ for all balls B.)

The balance condition (BC) is necessary if u is doubling but v € 4, is
certainly not necessary as shown for example by the results of [CKN] or by
the second result of [FKS]: v(z) can be |z|* for arbitrarily large . There
are also results in [GW] and [CW3] which allow any u, v that satisfy the
balance condition and for which

v/l € A,
for some IT = []; |z — as|, a; > 0 (e.g., large).

The problem is the method of proof, which deduces the result from
weighted estimates for the fractional integral

1
Lig(z) = /Q(C)WdCa
RN

by using the fact that

|f(z) = fBl <chi(|[VflxB)(2), z€B

(xB denotes the characteristic function of the set B). The difficulty is that
the fractional integral results require at least v—1/(P=1) ¢ Ll ., which rules
out weights like v(z) = |z|* for large a > 0.
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In [FGuW], we by-pass this difficulty by using a different representation.
This allows some unification of earlier results. It leads to new weights even
in the standard case and also applies to non-smooth vector fields of Grushin
type: consider

RY =R" x R™ = {z = (z,y): € R",y € R™},

and vector fields

0 0 0 7]
a—xl,...,a—xn, )\(x)—,,)\(x)ay—m,

where A(z) > 0 and continuous, but not necessarily differentiable. We
assume that A satisfies

(RH) ][ Mx)dx ~ ‘ ma>|( Ax)
z—xo|<r
le—zo|<r

and some other conditions to be stated later. A typical example is A(z)
= |z|* « >0, and the results will be new even when A = 1.

Denote
VA2 = Vo f ()] + M@)?*|Vy f(2) [

Define a metric p by means of sub-unit curves, i.e., absolutely continuous
curves v(t) in RV so that for all { = (£,n) € RY,

. 2
(5(8),Q)* < 1€ + A(v(1) [l
if Z1, 22 € ]RN, let
p(z1,22) = inf{T": 3 sub-unit curve v with v(0) = z; and v(T') = z2}.

This is the sort of situation studied in depth in [F]. In particular, the corre-
sponding metric balls are comparable to rectangles with fairly simple struc-
ture, and the balls are doubling with respect to Lebesgue measure.

To state the main result, we must first define the class of strong—A.,
weights in our context. Let w = w(z) € A, = Ups14, with respect to
Lebesgue measure and p-balls. For z1, zo € RV, consider the quasi-metric

1/N
0(z1,202) = N zilnfzeB (/w(z))\(z)m/(N_l)dz) ,
B
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where B is a p-ball and \(z) = A(z) if z = (z,y). If v:[0,T] — RV is
a sub-unit curve, its w-length is defined by

|o|—0

() = lim inf ‘ 6 (v(tig1),7(t:)),

where o = {t,;} is a partition of [0,T]. Define a “distance” d(z, z2) by
d(z1,22) = inf{l(v): v is a sub-unit curve connecting z; and z5}.
Then d is a pseudo-metric (d(z1, z2) = 0 may not imply z; = z). If
d(z1,22) ~ 6(z1, 22),

then d is a metric, and we say w is a strong-A., weight for the metric p.

When A = 1, this notion was introduced in [DS].

Examples. (a) w(z) =1,
(b) U)(Z) = p(z7zo)a7 a > 07
(c) w(z) = |¢'|, ¢ quasiconformal, A = 1.

Technical usefulness of strong—Ao.

Say A = 1 for simplicity. Then
1/N
d(z,z") ~ ( / w - lm/(N_l))
B(z*,|z—z*])
by definition. It is not hard to see by using the triangle inequality that
D.d(z,2%) < cw(z)'V,

whereas N
Dz( / w)
B(z*,|z—z2*|)

will spread onto the surface of the ball B(z*,|z — z*|). An analogous basic
fact about quasiconformal maps is that

s -~ ([ )"

B(z*,|z—2*])
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and of course the derivatives of the right side spread while those of the left
side localize at z.

We now state the remaining assumptions on A and w. We assume
(i) A(z)™ is in strong—A., with respect to standard Euclidean balls in R"™;
(ii) A = 0 at most in a finite subset of each ball;

(iii) if A(x1) = 0, then w(x,y) is bounded as & — x; uniformly in y for y
in any bounded set.

In the case n = 1 (m = N — 1), we can replace (ii) by the assumption
A >0 a.e., and (iii) is not needed at all.

Finally, A,(du) means A,(RY, p,du) for a doubling measure p.
Main Theorem. Suppose that 1 < p < ¢ < oo and that w, v satisfy the

balance condition (BC). If w is doubling and there exists a strong—A.,
weight w such that vw="=1/N) € A (w'~'/Ndz) then

(fr1@-salucraz)"" < crm)( [iwasereea:)
B

B

for all metric balls B.
Remarks. (i) Note that p = 1 is included. The case ¢ = p is not included
but there is a separate result for it.

(ii) The main point is that any high order zeros of v can be tamed by
multiplication by w~(~/N)_ In the A, condition, only integrals of v and
v~ (P=Dy? (for § > 0) arise, which is very good.

Lecture 3: HALF-SPACE ESTIMATES FOR THE GRADIENT ([WWi])
We consider the following

Problem. Given a function k(z) on R™ with some smoothness, some decay
at 0o, and [, k(z)dz =1,let f(z,y) = fxky(x) where ky(z) =y~ "k(z/y),
y > 0. We study the problem of determining weights w(z,y) on ]RTH and
v(z) on R™ so that

([[1wr@arroe.dsd) / F@pet ),

Rn +1
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where V = 9 2

<8$1 ...7m7a—y .
We study the case when 1 < p < ¢ < co. We also usually assume ¢ > 2.
Complete proofs will appear in [WWi].

There is an analogous problem with the Hardy H? norm on the right.
If v € A,, these are the same problem. For v = 1, there are complete
results even for p > 0 due to Luecking [L], Shirokov [Sh], and Verbitsky [V].
These results can be generalized if v € A, , and so one obtains L? results
ifve A, 1<p< oo, since then LP and H? coincide.

We want to study the L? problem without assuming v € A, or A,

The results depend on the rate of decay of k. If e.g., k(z)
= ¢, (1 + |z|>)~*+Y/2 then k,(z) is the Poisson kernel and f(z,y) is the
Poisson integral. Then

0 T3y
—k Tr) = —Cp n+1 7713,
oz, ) = e e
d |z|? — ny?

—ky(z) =cn—————75

3y ) = o ) P

For fixed y, these have orders |z| ™ 2, |z| ™! respectively as |z|] — oo.
The results are different, and in this note we will only discuss the case of
the x-derivatives.

Reformulation. For any k, by the chain rule, we have

k@) =y o) (o) = aiik(x))’
0

a_yky(x) =y o,(z) (¢(x = —nk(x Zx, : )

In either case, [y, ¢(z)dx = 0 (note that [ [-nk(z) — 3 zi5=-k(z)] da
Rn 1 ‘

=-n f k+ ;Rf k =0). So our problem becomes

Ty x f (@) ol x v ¢ x)[Po(z xl/p
<R{+/|y oy * f (@) w(z,y)d dy) < (HJU( )| ()d)

for [ ¢(x)dx =0, ¢ smooth with some decay.
R'yl.
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Of course, by taking absolute values and replacing ¢ by |¢|, we can obtain

results as corollaries of known Carleson type results. Roughly speaking, such
results (see [SW1], [SWZ], [GGK]) require the following if ¢ > p:

yM-n-l q i o(z) dz o
// |x—xo|+y+l) }w(x,y)dxdy) (/%) =

Rn +1 Rn

for all zo € R™, [ > 0, where |¢(z)| < (1 4 |#|)~M and o(z) = v(x)' "7,
1/p+1/p’ = 1. There are also sufficient conditions ([SW1], [Z]) for p = q.

Our conditions only involve integrating w(x,y) over sets T(Q) of the
form T(Q) = {(z,y): v € Q,1(Q)/2 <y < 1(Q)}, I(Q) = |Q|'/™, where Q
is a cube in R™. Thus T'(Q) is only the top half of the usual Carleson box.

For example, if v = 1 (¢ = 1) and f(z,y) is the Poisson integral, the
condition in [SW1] for p = ¢ is

J[ M2 avay < lql.
G

(Q ={(z,9): 2 € Q,0 <y <1(Q)}), while it will be enough that

// l‘“’ dz dy < c|Q).

T(Q)

Clearly, w(z,y) =y~ satisfies the second condition but not the first.

Necessary conditions are difficult to find because of cancellation. How-
ever, for the Poisson case, by using the full V, we can show that the following
is necessary (du(z,y) = w(z,y) dx dy):

@ a(r@) ([ 2 ) <

T—T (n—‘,—l)
R» (1+|Z(Q)Q|) ’

where zo denotes the center of Q.

The sufficiency results require strengthening the third factor, i.e., replac-
ing the integral involving o by something larger. They are obtained by
noting a connection of the original problem with Littlewood—Paley theory.
In fact, the original problem, i.e.,

([ o, spante.n) ™ < e [irpear) ™.

n+1
R
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is equivalent by duality to one for the operator

Ty(z) = / / gty 6y (t — 2) du(t,y),

n41
R+

namely, is equivalent to

([mor o) <e( [[1owiautn) "

R n+41
R+

The formula for T'g is reminiscent of the Calderén reproducing formula:
dt dy
f@) = [[ 1ru00,@- =2

n+41
RY

for ¢ € C§°, radial, [¢ =0 and

/ |2_y_1 for all £ £ 0.
0

Generally speaking, norms of f can be estimated in terms of norms of square
functions. This is how Littlewood—Paley theory enters. We now introduce
the sort of square function that we will use. A classical square function
associated with f is the Lusin area integral

S(F(x) = / IV F ()P jﬁ‘fyl

[t—z|<y
~ [ el
Y yn 1
t—z|<y
= 1
o <ot
y~2F

1 . 9
> o [ 15,00 deay,
(Q)
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where {Q} is a dyadic grid of cubes Q.
Also, since R = U T(Q) (disjoint),

Z//f*‘/fy Oy (x dtdy ZAQbQ

(o)
where
//f*wy (000 = ) =2
T(Q
and
Ao =101 |//|f*¢y Baty) "~ ([[ 17 e, )

T(Q)

The reason for this choice of Ag is to obtain desirable size estimates for bg
and Vbg. Note that by using the first formula for Ag, the square function
is essentially

st =(3 )

The properties of by are atom-like:
1) [bo(z)dz =0 since [ dx =0,

(2) supp bQ C 3Q since supp ¥ C {|z| < 1},

(3) lIbgllze < C and [[Vbgllr2 < ¢/I(Q) since |Ibgllz= < ¢/(|Q|'/?) and
IVbgllL= < ¢/(1(Q)|Q|'/?) due to the choice of Ag: e.g.,

1 c dtdy
|Vbg(z)] < A_/ | f o 1by (8)] ”—“7

c 2dtdy 1/2 dtdy 1/2
S A_ //|f 1/1y | 2n+3

T(Q
<c-Q ) 1|Q| > by definition of Ag.

We say f is in “standard form” if

= Agbg(z)
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for by satistying (1), (2), (3).

In our case, write

Z// (t,y)y ™" by (t — ) dp(t,y) = ZAQbQ

(o)

where now

bo(x) = é / / gt y)y™ 6, (t — ) du(t, y)

Q)

and

Ao =101 21@ (e @) ( [[ 1ol dute.) "
T(Q)

This choice of Ag guarantees by Holder’s inequality that

C
ol Vboll~ < 7=
lball~ < 1o IVbelle < grgiomra

245

Also, [bg dx = 0 since [ ¢dx = 0. But the support of by is not generally

compact.

If we assume that ¢ is supported in {|z| < 1}, then supp(bg) C 3Q, and

it is natural to hope that we can estimate norms of T'g by norms of S(T'g)

defined by
A2 1/2
= (X 5a®)

where @ = 3@ and Ag is as above.

For weighted norms there are sharp results of this type due to [CWiWo]
and [Wi]. These help us prove the following result. We use the notation

o)

7Q

7@ = [ olo)tog” (e +

Q
and o9 = |Q| / ydz (@ may not be dyadic).

)dw forn >0
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Theorem 1. Let ¢ € C°(R"), [¢ = 0 and supp¢ C {|z| < 1}. Let
l<p<g<ooandqg>2 Ifn>yp/2and

Q1 (T(@) (@, <<,
then

([ w6, spante,n) ™ < o [1r@prot ).

Rn +1 R~

To obtain results when ¢ does not have compact support, we make the
following definition.

Definition. Let o, 7 be weights and 1 < r < co. We say (o, 7) is an r-pair
if o(x) < 7(x) a.e. and if

1Rllzy < ISC)L

for all A in standard form.

Examples.

(1) If 0 € A, then (0,Co) is an r-pair for C = C, .

(2) If k > 7/2 then (0, CM*0) is an r-pair for C = C}, ,, and M* is k-fold
iteration of Hardy-Littlewood maximal function ([Wi]).

We will state a better result below. First,

Theorem 2. Let 1 < p<¢g< oo and q > 2. Let ¢ € C~, [¢ =0 and
lp(2)] < (14 |z))™™, |[Vo(z)] < (1+|2|)=M=" for some integer M > n + 2.
If (o,7) is a p'-pair and if

QT @) ([ r@sot@r )" <,

R~

where

B log(e + |zl(—5)(2|)

T—T M
(1+ gt

([ 1o, sranten) " <e( [lr@pot )"

Rn +1 R~

then
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Note that the restriction M > n+2 allows the z-derivatives of the Poisson
kernel but not the y-derivative.

The next result gives some information about r-pairs.

Given o(z) and a > 0, let

ul
Woolw) = s o7 / log? (e+ 272 ) .

Note Wyo = Mo, the Hardy—Littlewood maximal function. It is a conse-
quence of [St] that Wio < ¢ ,M** Lo for k=1, 2, ..., where M**! is the
(k + 1)-fold iteration of M.

Theorem 3. Let r > 2. If a +1 > r/2 then (0, cqnWqoo) is an r-pair.

In particular, if & is an integer greater than r/2, then (o,cWjy_10) is an
r-pair, and so (o,cMF*o) is an r-pair. This last statement was proved in
[Wi] and is also true for 1 < r < 2 with k£ = 1. In fact, Wilson showed that
(o,7) is an r-pair if there exists an n > r/2 so that

/a(x) log” (e+ U(Q)) dr < cZ (z) da

Q

for all @. Thus, it is enough to show that

/U(x) log® ™! (e + %) dr < CQ/WQU(I) dz.

Q

This was also proved in [GI] if « is an integer (o = 1). The proofs are
different.

If we combine the last two theorems and remember that r = p’, we get
the estimate

ly™ by * f(2)]

for ¢ with [¢ = 0, |p(x)] < (1 + |z])~M, [Vo(a)| < el + |zf)~ 2!
M>n+2if

for2<p<g<oo:

L?lu(Rl-H) S C”f“LE(]R")

|@|_1/~L(T(Q))1/q(/Ma(x)sQ(x)pI/q’dx)l/p’ <c,
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forl<p<2<g<oo:

|@|_1M(T(Q))1/q(/Wao(x)sQ(x)P'/qrdxy/p’ <c

for some o > p'/2 — 1.

Sketch of the proof of Theorem 2. Assume |p(z)| < c(1 + |z|)~™ and
|Vo(z)| < c(1 + |z|)~ ML for an integer M > n + 2. This includes the
z-derivatives of the Poisson kernel. Also assume that we know Theorem 1,
i.e., the compactly supported case. The proof involves a reduction to the
compactly supported case by using the following (modified) theorem of [U].
Write M = (n +2) +m for m =0,1,....

Lemma 1. Let m =0,1,... and

(i) [6(x)] + |Vo(2)] < (1 + |z]) 2™,
(ii) [pn #(2)P(x)dax =0 for every polynomial P with degree < m + 1.

Then there are functions {v;(x)}$2

22 i(m+2) 22 int24m)y ( )

2o So that

with
(a) supp(vi) C {[x] <1},
(b) supp(v) C {e < |2 € 1},0 < c < 1, if i £0,
(©) lville <C,
(d) [fon vi(z)P(z)dz =0 if deg(P) < m + 1.

In [U], the stronger hypothesis that 0 does not belong to supp(&&\) is made
but not required in the proof. Also, (b) is not stated there but follows from
the construction.

Our ¢ has enough decay but not enough moments vanish. This is easy
to fix. Pick ¢, € C§° with support in {|z| < 1} so that [ ¢ P = [¢P if
deg(P) < m + 1. Write

p=¢1+(0—1).

Then

e ¢ satisfies [¢1 = [¢ = 0 and has compact support so can be
treated by Theorem 1.
e ¢ — ¢ has lots of vanishing moments and the same decay as ¢.
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Thus, by replacing ¢ by ¢ — ¢1, we may assume that ¢ satisfies the
hypothesis of Lemma 1 and

IVo(z)| <e(L+|z)) ™ ™ 3 (=c(l+|z)) M1).

Recall that Tg(z) = [[on+1 g(t,n)n~" éy(t — &) dp(t,n) and we want to
+
show that

(/ITgl”ladw)l/pl < c(// Iglq'du(my))w.

Rn n+1
R+

Since (o, 7) is a p'-pair, the left side is less than or equal to

([Beprran)™,

B
where
§(To)(a) = (Z A|(3|)2)1/27
Q3
AQ) = (// |Tg*wy(x”zalacyaly)l/Q7

T(Q)

and 1 is as in the Calderén reproducing formula. By definition of T',

|Tg*¢@m»|sL[/hxannnfwwy*¢na——xnduann.

n+1
]R+
We must estimate ¢, * ¢,,.

Lemma 2. For ¢, ¢ as above

yn™ e

w [
7"+ log(e + 1)
yn+m+2

ifn>yorifn <y and |x| > 5y
|(¥y * &) (x)] < ¢
ifn <y and |z| < 5y.

This uses [U] Lemma 1 and involves some computation.
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Now write

T # 1, ()] < / / (gt ) 0 (0 % 6)(t — )| dia(t, )

R+
?7(Q)
Let Q' be a fixed dyadic cube and let (z,y) € T(Q'). The sum is

2t X

Q: QCQ  Q: QZQ’

Think of y as I(Q'), and n as I(Q). Also, z € Q" and t € Q, so if Q C @
then both n <y and |z — t| < 5y. This corresponds to the second estimate
in Lemma 2. Similarly, if Q ¢ Q' then either Q is too big or @ is not too
big but centered far away from Q’. This corresponds to the two possibilities
in the first estimate.

We get
sup ITg*wy( )|
(z,9)€T(Q
Q)" ! (Q")
/ ol due|{ n+m+2 log (e + Q) )}
Q: QCQ’ 7(Q)
eHe)m+t
/flgldu n+m+3}

=I+1I.

We will consider only I, which is easier than II. Since

AQ') = (/ |Tg*1/1y(x)|2dxdy>1/2’
T(Q")

the contribution of I to A(Q') is just

QT =17 a(@Q,Q)G(Q),
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where
|9l dp
-]
d
: @.Q) = Do (e 1D g
R Ty B )

(and a(Q’', Q) = 0 otherwise).

The corresponding part of

= (= %)

is

(Y (Ta@.c@)]”

Q3 @
Since we want to show that

- 1/t1
15T,y <c / / e

Rn +1

and since (by Holder’s inequality)

GQ7 u(T@) ™" < / 191 dp,

it is enough to show that

(J(Z [Zw@.@o@]) rwa)

pr Q3¢ @

< (e um@) )"
Q

1/p'

The argument now depends on whether p < 2 or p > 2. Consider 1 <

p < 2 (only). Use duality to estimate the left side: for h(z) € L/ with
norm less than or equal to 1, consider the inequality

(T[T a@.c@] [n )" <o( Y a@rnr@) )"
< Q

@ o
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This is a sequence space problem.

Let
Y(Q) =G(Q)/Ql,
AQ,Q) =a(Q,Q)IQl,
v(Q') = ht dx,
(@) /a
p(Q) = 1017 n(T(@))" "
Question.
(T[T a@.or@] @) <e( Zr@fw@)”
Q Q Q

Le., does the kernel A(Q', Q) map
1 (p(Q) = P (v(@)?
Recall that ¢’ < 2. By the Riesz—Thorin theorem, it is enough to show that
[ — 1=

and

Hp(@) = P17 (1(@)
since 1/2= (1 —t)/oco+t/(2/q') means 1/¢' = (1 —t)/oco +t/1.

[*° — [*: We must show that

Z A(Q',Q) <c¢ forevery Q',
Q

or, by definition of A, that

H(Q)m+ 1(Q") 1
Z~ 1(Q"yntm+2 log (6 + 1(Q) )Z(Q) <
Q: QCQ’
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The sum is

> (zl((QQf)) )n+m+2 log (e + ll((%)) )

Q: QCy
1+e¢
sc¢ Z (||3,||) for some € > 0 sincen+m+2>n
Q: QCcq’
<c by a standard argument.

I' — (2/¢": By Minkowski’s inequality,

(T [ a@.ov@] " we))"”
Q

2
<> [T @ v v,
Q

S0 it is enough to show that

qa'/2
] <cp(Q) for every Q.

(> a@, ¥ v@)
>

We will use the fact that for «, 5 > 0,

(%) Zko‘e_kﬁ < caﬁj“e—jﬁ, 7 >1.
k>3
Write
ST AQL Q)M v(Q)
QI
_ (Q) \HmHD T oy (%))
_QI.XQ:C@ (l(Q’)) log=/1 (e+ l(Q))~/thx
: o

:/{ Z (l(Q) )(n+m+2)% 10g2/q' (e + I(Q’))X@(x)}h(I)T(:ﬂ) dz.

[
B"  Q': QCQ’ @

In the inner sum, the cubes Q' satisfy |v —2¢| < cl(Q') and I(Q) < cl(Q"),
e, 1(Q') > cllz — wq] +1(Q)]
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By (%), we get at most

c/ (L)(mrwwr?)% logz/q' (€+ w)h(x)r(;c) dx

J e =wol+1@) Q)
:c/sQ(x)z/qlh(x)T(x) dx Dby definition of s¢.
R’II

Now use Hélder’s inequality with exponents p’/2 and (p'/2)’, and recall that
ANl w2 < 1. We get at most

ot 2/p' 10| 2 .
c so(x)P /a 7(z) dz <el —————— by hypothesis.
(f P sl

Raise this to the power ¢'/2 and note that the result equals cp(Q) as desired.

Lecture 4: OPERATORS RELATED TO STARLIKE SETS ([CWaW], [W2])

We shall study weighted norm inequalities for certain generalizations of
the Riesz fractional integral operators and associated maximal operators.
We employ the idea that the geometry associated with the operators should
be reflected in the conditions imposed on the weights.

Model case. One such operator is the following: on R™, n > 1, define

Lopf(x) = f % kap(2),

where
1

ko p(x) = e[z,
for x = (x1,...,24-1,2,). Here —=f<a<n—1land 0< 3 < 1.
Putting S = {z: ko g(x) > 1} we can easily see that S depends only on
y=(Mm-1-0a)/(1—p); we can write S = 5,, 0 <y < o0.
Rewrite

1 (zal/l2)~ _ Q)

ka,s(x) = |z 1=z, [P - |z|n—(a+B) |g[n—r’

where = a+ 3,0 < u < n and Q(z) = (|z,|/|2])° . The function Q(z)
is nonnegative, homogeneous of degree 0 and unbounded.
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In general, let
Q(x)

||

IQ,;Lf = f *
and consider the set

Q(x)

efrr

S={z > 1} = {z: |z| < Q)Y ("M},

It is starlike about the origin. In polar coordinates, i.e. z = rf with r = |z|
and § = z/|z| € £ := {z : |x| = 1}, let

p(6) = QO H,

Then

Note that

p(0) )
|S] :/dx:/ / r"ldrdf = E/p(e)nd0< 00
s S0 5

if and only if p € L™(Z) (i.e. Q € LY (=1 (%)),
Denote k(z) = Q(x)/|z|*~*. Then |{k > 1}| = |5], and for A > 0,

[{k > A} = [{r6: 0 < v < A7V p(g)} = A )5

by dilation.
Thus, if | S| < oo, then

{k > A} < CA/ (=),
and it follows from known results that

1
Ig,: LF = L1, if —=

SI=

n
) 1<p<_7
7

i.e., Ig , satisfies the same unweighted estimates as the usual Riesz fractional
integral. (The restriction |S| < oo in the model case p(f) = |8, Y/(+D
amounts toy+1>n, or 8> af(n—1).)
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If Fis a set in R™, ¢t > 0, then we denote
tE ={tx: x € E},

Apof(z) =t / flz—y)dy = / f(x — ty) dy.
tE

E

We can prove by the use of polar coordinates that
o (@) = (=) [t 45,5 (o
0

Now it is natural to define the mazimal operator (centered at x)

Me,f(x) = sup t* Ag. o f(x) = sup t* " / f)dy, f>o.
t>0

For the maximal operator, we allow p=0: 0 < u < n.

In the case p = 0 and |S| < oo, there are unweighted estimates for
Mg due to C. P. Calderén [Ca] as well as M. Christ [Ch] and M. Christ
and J. L. Rubio de Francia [ChR]. There are some weighted results due to
D. Watson [Wal,2].

For u > 0 we have the relation
MS,;Lf(x) <c- IQ,#f(x)'
In fact, if r < ¢t then S C tS by the starlike nature, so
Asof@) = [ e =pdy <o [ -y
rS tS

= (£) asuf@),

and therefore by using the representation above, for all r > 0,

2r

Tonf @) 2 (=) [ (0) " Asese)
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Now take the supremum over all r > 0.

We define the uncentered mazimal operator (by a set E):

Ms g, f(z)= sup - /f

t>0, ZER" z—tS

rEz—tE
If £ is empty, this reduces to Mg, f. Typically, £ would be the central
portion of S. The results for Mg, and Mg g, are very different. In the

case i = 0, Mg g, (with a different normalization) was studied by A.
Cordoba [Cor].

Some Results. Consider first the model case S = S,. There is a class
of rectangles naturally associated with S. For a > 1, consider the linear
transformation ¢, defined by

by = (ax1,...,ax,_1,a  "x,) when = (x1,...,2,),

and the rectangle R, = §,Q1 where @ is the unit cube with center 0. Note
that |R,| =a"177; |S] < 0 if n — 1 — v < 0. Denote

B(R,) ={z+tR,: z € R",t > 0}
the class of all translates and dilates of R,,.

Theorem 1. Let 1 <p< g <o00,0< pu<n, and w, v be weights.
(I) If the weak type estimate

w({z: Mg, f(x) > A}) < (%)

holds, then there exists a constant ¢ > 0 such that for all @ > 1 and all
R € B(R.),

1
(/ /v = l)p < eB|R,|7T if p>1
R

“ 1
1( w) esssupﬁ<cB|R|n T oif p=1.
R

Q=
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(IT) Conversely, if the last condition holds with “cB” replaced by a mono-
tone function C'(a) which satisfies

C’(a)(%a:b it ¢g>1

o0

/C(a)(1+10g+C(a))d—a:b if p=q=1,
a
1

then the weak type estimate holds with B < cb, for some constant ¢ inde-
pendent of w, v and f.

(III) If 1 < p < q < o0, the strong type estimate

| Ms,.fllre < Bl fl

Ly
holds if there exists r > 1 such that

w1 i1 e\ b
[ Gy ) e
R

R

|R

for all a > 1 and all R € B(R,), provided [~ C(a) 4o < 0.
There are also both weak and strong results for I, g, e.g.

Theorem 2. Let 1 < p < g < oo. Then the strong type estimate

e 5f]

holdsif 0 < B <1, B <a<n—-1,vy=(n-1-a)/(1 —B) and there
exists r > 1 such that

1
' 1 o (1 r \ 7T I
R|% vTa _/ r _/ 5T < C(a)|Ry|" 1
|R| w v ® )" < C(a)|Ra|
R

R

r, <Ol flley

for all R € B(R,) and all a > 1, and with C'(a) the same as in Theorem 1.

Remark 1. The conditions on the weights can be rephrased in terms of cubes
Q instead of rectangles R, but with altered weights. For example, defining

dow(z) = (det 8y )w(6,x) = |Ro|w(baz),
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the condition just above for strong type can be written as

QI ¥t <|Q| /(6 )T>$<|§1|/(6av)—;ﬁ)ﬁ < C(a)|Ro| "
Q

In the case p < ¢, the condition

(%)

L </6w sl Vdv’”) (f(éav(x))_p_ll-sQ(x)P’dxf

Rn.
Ca)|Ra| ™,

is sufficient, where [ C(a)%® < oo and sg(z) = (|Q|Y™ + |z — zg|)*™
1
(here zg denotes the center of @), and the same condition, but with C(a)

independent of a, is necessary.

Remark 2 (stronger necessary condition). In the earlier condition (x), if we
change the variable, x = § 'y, then (x) becomes

Q5 ([ wlsa@; wydy) ([ o) T sa; ) dy) " < Cu.
Rn R
However, one can show that
sq(6,'y) S e3r(y), R=28.0Q,

and where if R = I x J (where I is a cube in R and J is an interval in
R!), then
1
§R(y) = 1
T+ |y —yrD" T (I lyn —yRa)' 0

The corresponding stronger condition (|6, 1 R| = |Q])

(1

RN " L’
w5 Ldy v T sty <cC
| R g J

for R € B(R,), a > 1, is still necessary. But any rectangle R of the form

I x J with I a cube in R"~! and J an interval in R! with |[I|7=T > |J]|
belongs to B(R,) for some a > 1. Moreover, then

yt+1l—n
R gy
&)~ e '
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Thus, the condition can be rewritten in terms of a general R of this type,
with a factor involving the eccentricity. Could this be sufficient if ¢ > p?

Remark 3. One can find conditions involving only cubes or balls and the
original weights, but they are not very sharp. Here is one for p = 0:

[Ms0fllz < cllf]
if 1 <p<oo,y+1>n,and either

P
L

w e Ap(1_7$1) if p(l-— #) >1

or

w e Ap’(l—%) if p’(]. - #) > 1.

The off-centered function.

Define
Ms g, uf(x) = sup 7" / -
t,
t>0,zZ€R"‘ 24tS
zE2+tQ1

This amounts to taking the sup over all regions which contain x in their
central portions but not necessarily as their center.

Define 6}z = (azy,...,ax,_1,2,) and RE = §5Q1. Note R is the small-
est rectangle which contains both R, and @;. Consider pairs (R, R*) which
are joint translates and dilates of (R, R}).

Theorem 3. Let 1 <p<g<o0,0<pu<n. If the weak type estimate

B v\ 4
w({Ms,guuf > A}) < (%)

holds, then
1
|R%* (/w)q/v_P+1 < ¢B|R, wlgf p>1,
R~ R
JE % ]- B q .
|R| ™ ( w) ess sup — < cB|R,|» if p=1,
e TER v(x)

for all @ > 1 and all pairs (R,R*) with R € B(R,). Conversely, if the
condition holds with ¢B replaced by C(a) (as in Theorem 1), then the weak
type estimate holds.

Remark. The behaviors of the centered and off-centered operators are very
different, even for unweighted results: if w = v = 1, one needs v+ 1 > n
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and 1/¢g = 1/p — p/n for either the centered or off-centered operators, and
also

l<p<n/u

for centered operator to be of strong type; for the off-centered operator the
condition

.
IS5

is necessary to be of weak type, while the condition

>1

v

SRy Py gy

is sufficient.

Theorem 4. If1 < p < g < oo, the off-centered maximal function satisfies
the strong type estimate

1Ms,q, ufllg, < BIlfl

Ly

if there exists r > 1 such that

i
n

et (o) (g [ =) <
R

R*

with C(a) as in Theorem 1.
The following result used in the proof of Theorem 4 may be of interest
in itself.

Consider any fixed rectangle (e.g., R,) and let B be the family of all its
translates and dilates. To each R € B associate a set R* (not necessarily
a rectangle) and assume that

erRQEEB and }ﬁVC.R2:>Iﬁ C.R;

Define

ReB

1
M., f(x) = sup |R|ﬁ/f’ 0<acx<l.
R*>z R
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Theorem 5. Let 1 < p<g< oo and 0 < « < 1. If there exists r > 1 such
that
! ! N
et ([ o) (i [ ) <
|R|

R* R
with ¢; independent of R, R*, then

1Mo fllng, < e2llf

Ly
with ¢o = ccy and ¢ independent of B, f.

Remark. In case R = R* = cube, this was proved by C. Perez [P2]. The
problem is to find a necessary and sufficient condition when ¢ > p.

Results for more general starlike sets. If S is starlike around 0, then
there exist rectangles { R;}32, satisfying

(1) R; contains 0 on its major axis,

(2) SC Uj R;,

(3) 225 IR, < CS|.
If S is also open then in addition

(5) there exists ¢ > 0 such that cR; C S.

Given a rectangle R containing 0, we can associate a linear transformation
Or with det 6 = |R| and R = 6rQpr where Qg is a cube of edgelength 1
containing 0. Let

dpw(z) = (det dr)w(dp).
Here is a typical result, analogous to the earlier strong type estimates for
I p.

Theorem 6. Let 0 < p < n, >0 be homogeneous of degree 0, S be the
starlike set corresponding to 7 = p(8) for p(f) = Q(A)'/(*~#) | and suppose
l<p<g<oo.

(a) Necessity: If S is open and symmetric about 0 and if
Io,ufllLs < Bllfllzz,

then for every rectangle R C S with center 0 and every cube Q (not related
to R)

|Q|1—%(/(6Rw)qudx);(/(6Rv)pllsgdx)pl’ < %

R R
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(b) Sufficiency: If S is starlike and {R;} is a cover satisfying (1), (2), (3)
and there exists r > 1 such that for all cubes Q

23 1 1 I L C
,,,+ 11 p’ J
n  p 6R w dx / 6R v *1 dSC T T

IQI/ IQI ) SR

with Ej C; < o0, then the strong type estimate holds.
(c) If p < q and if for all cubes Q

1 1
- A A\ o G
Q' = (/(6ij)stx) (/(6ij) ] 15de) < ﬁ
Rn Rn
with Ej C; < o0, then the strong type estimate holds.
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