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NON-NEWTONIAN FLUIDS AND FUNCTION SPACES

Michael Růžička, Lars Diening

Abstract. In this note we give an overview of recent results in the theory
of electrorheological fluids and the theory of function spaces with variable

exponents. Moreover, we present a detailed and self-contained exposition of
shifted N-functions that are used in the studies of generalized Newtonian
fluids and problems with p-structure.

1. Introduction

In recent years Lebesgue spaces with variable exponents Lp(·) and the cor-
responding Sobolev spaces have attracted more and more attention. The
spaces Lp(·) have been studied for the first time already in 1931 by Orlicz
[44]. Later these spaces have been investigated in the more general context
of generalized Orlicz spaces and modular spaces by Nakano [42], Musielak
and Orlicz [40], [41], Hudzik [32] and others. The newer developments in
the theory of variable exponents spaces started with the papers by Zhikov
[59], Sharapudinov [55] and Kováčik, Rákosńık [34]. At the turn of the
millenium several factors contributed to start an intensive and systematic
study of variable exponent spaces. These factors include that for many prob-
lems the log-Hölder condition was found to be “correct” and that problems
in fluid dynamics and mechanics led naturally to settings with variational ex-
ponent spaces (cf. Rajagopal, Růžička [47], [48], [51], Zhikov [60], [61]).

In sections 2–4 of this note we want to give an up-to-date overview of
results in the theory of electrorheological fluids and the theory of function
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96 MICHAEL RŮŽIČKA, LARS DIENING

spaces with variable exponents and show how problems arising in these fields
have inspired each other. In the last four sections we present a detailed
and self-contained exposition of shifted N -functions. They are motivated
by studies of generalized Newtonian fluids and problems with p-structure.
The shifted N -functions are particularly useful when differences of the cor-
responding operators are investigated (cf. [15], [18], [16], [14]).

2. Modeling

Many electrorheological fluids (abbreviated: ERFs) are suspensions consist-
ing of particles and a carrier oil. These suspensions change their material
properties dramatically if they are exposed to an electric field. Winslow
[23] is credited with the earliest observations on the change of viscosity in
electrorheological materials. For an overview of microscopic models and ex-
planations in electrorheology we refer the reader to [45]. For more details
related to the modeling we refer to [48], [51], [52].

In order to get a model where the complex interactions between the
electrical, mechanical and magnetic fields are incorporated one starts with
the thermo-mechanical balance laws, the Clausius-Duhem inequality and
Maxwell’s equations. The interaction between the fields is modeled on the
basis of the “dipole–current–loop” model. The resulting system is a highly
complicated nonlinear system of partial differential equations, which is much
to general to describe the behaviour of ERFs. Thus appropriate assumption
for the general structure of the constitutive relations are made. Moreover,
a non-dimensionalization is performed, which restricts the resulting system
to certain but typical situations. This procedure results in the following
electrorheological approximation describing the isothermal flow of an incom-
pressible ERF1

div E = 0,
curlE = 0,

(2.1)

∂tv − div S + [∇v]v +∇π = f + χE [∇E]E,
div v = 0,

(2.2)

div B = 0,
µ−1

0 curlB + χE curl(v ×E) = (ε0 + χE)∂tE,
(2.3)

S ·D ≥ 0, (2.4)

1Here and in the following we use the notation [∇u]w =
P3

j=1

`
wj

∂ui
∂xj

´
i=1,2,3 for

vectors v, w.
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where E is the electric field, v the velocity, S the extra stress tensor, π the
pressure, f the mechanical force density, χE the dielectric susceptibility,
B the magnetic flux density and ε0 and µ0 denote the dielectric constant
and the permeability in vacuo, respectively.

The system (2.1)–(2.3) is separated. We first solve the quasi-static Max-
well’s equations (2.1) for the electric field and then seek for the velocity field
by solving (2.2). Knowing E and v we can solve (2.3). Maxwell’s equations
(2.1), (2.3) are widely studied in the literature (cf. the overview article [38]).
Thus we shall concentrate on the system (2.2), in which E is assumed to be
a given vector field, having certain regularity properties. In (2.2) it remains
to specify a constitutive relation for the extra stress tensor S. ERFs can be
modeled with a generalization of a power-law or Carreau type ansatz

S = α21

(
(1 + |D|2)

p−1
2 − 1

)
E⊗E

+ (α31 + α33|E|2)(1 + |D|2)
p−2
2 D

+ α51(1 + |D|2)
p−2
2 (DE⊗E + E⊗DE),

(2.5)

where αij are constants and D = 1
2 (∇v + ∇v⊤) denotes the symmetric

velocity gradient. The peculiarity of ERFs is that the power-law expo-
nent p depends on the electric field (cf. Halsey, Martin, Adorf [30],
Abu-Jdayil, Brunn [1], [2], [3]), i.e. p = p(|E|2) is a C1-function such that

1 < p∞ ≤ p(|E|2) ≤ p0. (2.6)

Imposing slightly more restrictive conditions on the coefficients αij than
those resulting by the validity of the Clausius–Duhem inequality (2.5) we
have that the operator induced by −div S(D,E) is uniformly monotone,
i.e.,

∑

i,j,k,l

∂Sij(D,E)
∂Dkl

BijBkl ≥ γ1

(
1 + |E|2

)(
1 + |D|2

)p(|E|2)−2
2 |B|2 (2.7)

is satisfied for all B,D ∈ X := {D ∈ R3×3
sym : trD = 0}, and that the

following growth conditions are satisfied for i, j, k, l, n = 1, 2, 3,
∣∣∣∣
∂Sij(D,E)
∂Dkl

∣∣∣∣ ≤ γ2

(
1 + |E|2

)(
1 + |D|2

)p(|E|2)−2
2 , (2.8)

∣∣∣∣
∂Sij(D,E)

∂En

∣∣∣∣ ≤ γ3|E|
(
1 + |E|2

)(
1 + |D|2

)p(|E|2)−1
2

(
1 + ln(1 + |D|2)

)
. (2.9)
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Thus the natural function spaces to treat the system (2.2), (2.5)–(2.9) are
Lebesgue and Sobolev spaces with variable exponents. From the mathe-
matical point of view the system (2.2), (2.5)–(2.9) is a generalization of
generalized Newtonian fluids, where the power-law exponent p is constant.
These fluids are well studied (cf. Málek, Nečas, Rokyta, Růžička [36],
Frehse, Málek, Steinhauer [25], [26], [27], Růžička [49], Wolf [58])
and involve techniques like the continuity of Calderón-Zygmund operators,
Korn’s inequality, passing to divergence free test functions with the help of
the divergence equation divv = f and others. For a better mathematical
understanding of ERFs it is necessary to transfer these techniques to variable
exponent spaces Lp(·) and W 1,p(·).

3. Variable exponent spaces

Let us now introduce the spaces Lp(·)(Ω) and W 1,p(·)(Ω) and state some
fundamental properties of these spaces, which can be found in the litera-
ture mentioned above. Hereby Ω ⊆ Rn denotes a domain with sufficiently
smooth boundary. For a measurable and almost everywhere finite function
p : Rn → [1,∞) (called the exponent) we define Lp(·)(Ω) to consist of mea-
surable functions f : Ω → R such that the modular

ρp(f) :=
∫

Ω

|f(x)|p(x) dx

is finite. If p+ := sup p <∞ (called a bounded exponent), then the expression

‖f‖p(·) := inf{λ > 0 : ρp(f/λ) ≤ 1}

defines a norm on Lp(·)(Ω). This makes Lp(·)(Ω) a Banach space. Moreover,
one can show that C∞0 (Ω) is dense in Lp(·)(Ω) and that Lp(·)(Ω) is separable.
If p− := inf p > 1, then Lp(·)(Ω) is uniformly convex and the dual space
is isomorphic to Lp

′(·)(Ω), where 1
p(·) + 1

p′(·) = 1. Further, let W 1,p(·)(Ω)
denote the space of measurable functions f : Ω → R such that f and the
distributional derivative ∇f are in Lp(·). The norm ‖f‖1,p(·) := ‖f‖p(·) +
‖∇f‖p(·) makes W 1,p(·)(Ω) a Banach space. By W

1,p(·)
0 (Ω) we denote the

closure of C∞0 (Ω) in W 1,p(·)(Ω).
The spaces Lp(·) have some undesired properties. For example the trans-

lation operator is in general not continuous on Lp(·). Especially, for every
non-constant exponent p there exists f ∈ Lp(·) and a translation τh such
that τhf /∈ Lp(·) (cf. [34], [11]). As a consequence the convolution with
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a function g ∈ L1 is in general not continuous; in fact, Young’s inequality
‖f ∗ g‖p(·) ≤ C‖g‖1‖f‖p(·) holds if and only if p is constant (cf. [11]).

Surprisingly, it turns out that under rather weak conditions on the expo-
nent p many of the results from the classical Lebesgue and Sobolev spaces
can be recovered. The crucial condition is the so-called log-Hölder continuity
of the exponent p, i.e.,

|p(x)− p(y)| ≤ C∣∣ln |x− y|
∣∣ (3.1)

for all |x − y| < 1/2. If Ω is unbounded, then (3.1) is supplemented by the
condition that there exists the limit p(∞) := limx→∞ p(x) and

|p(x)− p(∞)| ≤ C

ln(e+ |x|) . (3.2)

A breakthrough in the theory of variable exponent spaces was the obser-
vation by Diening [11] that the Hardy–Littlewood maximal operator M is
continuous in Lp(·) if p satisfies (3.1) and is constant outside some large ball.
Later the result was refined with (3.2) by Nekvinda [43] and Cruz-Uribe,
Fiorenza, Neugebauer [10].

Theorem 3.1. Suppose that the bounded exponent p is log-Hölder contin-
uous and satisfies (3.2) and 1 < p−. Then the Hardy–Littlewood maximal
operator M is continuous from Lp(·)(Rn) to Lp(·)(Rn).

We say that the exponent belongs to the class P if the Hardy–Littlewood
maximal operator M is continuous from Lp(·)(Rn) to Lp(·)(Rn). Note that
the conditions in the above theorem are optimal in the sense of the mod-
ulus of continuity (cf. [46], [10]). As consequences of Theorem 3.1 one ob-
tains that it is possible to mollify functions in Lp(·) with mollifying kernels
ω ∈ C∞0 (Rn) (cf. [53], [11], [56]), that C∞(Ω) is dense in W 1,p(·)(Ω) for
domains Ω with Lipschitz-continuous boundary and that the Riesz opera-
tor is bounded on Lp(·)(Rn) (cf. [54], [12]). Moreover, one can show that
the sharp maximal operator M ♯ provides an equivalent norm on Lp(·)(Rn).
Recently, Diening [13] gave a characterization of exponents belonging to
class P. One says that the exponent p is of class A if the averaging operator
TQ : f → ∑

Q∈Q χQ
∫
Q
f dx is uniformly bounded on Lp(·)(Rn) with respect

to all families Q of disjoint cubes Q.

Theorem 3.2. Let p be a bounded exponent with 1 < p−. The following
assertions are equivalent:

(i) p(·) is of class A;
(ii) M is bounded on Lp(·)(Rn), i.e. p ∈ P;
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(iii) Mqf := (M(|f |q))1/q is bounded on Lp(·)(Rn) for some q > 1 (“left-
openness”);

(iv) M is bounded on Lp(·)/q(Rn) for some q > 1 (“left-openness”);
(v) M is bounded on Lp

′(·)(Rn).

Another important issue is the extension of the theory of singular opera-
tors to variable exponent spaces. The first results in this direction, proving
the boundedness of singular operators and extending the Calderón–Zygmund
theory, can be found in Diening, Růžička [19]. We say that an operator
T is associated with a kernel k if

(Tf)(x) :=
∫

Rn

k(x, y)f(y) dy

holds for f ∈ C∞0 (Rn)and for a.e. x /∈ supp(f), where the kernel k is a locally
integrable function defined on Rn×Rn \ diag. A truncated kernel kε, ε > 0,
is defined through kε(x, y) = k(x, y) if |x− y| > ε and otherwise zero. Using
the results from [19] and [13] we have the following:

Theorem 3.3. Let T be an operator associated with a kernel k which sat-
isfies

|k(x, y)| ≤ A |x− y|−n,
|k(x, y)− k(z, y)| ≤ A |x− z|δ|x− y|−n−δ

(3.3)

for all x, y, z ∈ Rn with x 6= y and |x − z| < 1
2 |x − y|. Suppose that T

extends to a bounded operator from L1(Rn) to L1,∞(Rn). Let p ∈ P(Rn)
be a bounded exponent with p− > 1. Then T is a bounded operator from
Lp(·)(Rn) to Lp(·)(Rn).

A kernel k is called Calderón–Zygmund kernel if and only if N(x, z) :=
k(x, x − z) is homogeneous in z of degree −n and

∫
|z|=1

N(x, z) dz = 0,∫
|z|=1

|N(x, z)|q′ dz ≤ C for some q > 1 (cf. Calderón–Zygmund [7]). We
denote by Tε the operator associated with the truncated kernel kε.

Theorem 3.4. Let k be a Calderón–Zygmund kernel which satisfies (3.3)
and

|k(y, x)− k(y, z)| ≤ A |x− z|δ|x− y|−n−δ.

Let p ∈ P(Rn) be a bounded exponent with p− > 1. Then the operators Tε,

(Tεf)(x) :=
∫

Rn

kε(x, y)f(y) dy,



NON-NEWTONIAN FLUIDS AND FUNCTION SPACES 101

are uniformly bounded on Lp(·)(Rn) with respect to ε > 0. Moreover,

Tf(x) := lim
ε→0+

Tεf(x)

exists almost everywhere and limε→0+ Tεf = Tf in the Lp(·)(Rn)-norm. In
particular, T is continuous on Lp(·)(Rn).

Using these results one can obtain optimal W 2,p(·)(Rn) estimates for so-
lutions of linear elliptic equations and systems. For corresponding optimal
estimates in the halfspace one can generalize the Agmon, Douglis, Niren-
berg theory (cf. [4]) to variable exponent spaces, which is done in Diening,
Růžička [20], [21].

A completely different approach to the boundedness of operators in vari-
able exponent spaces is provided by Cruz-Uribe, Fiorenza, Martell,
Pérez [9] via norm estimates in classical weighted Lebesgue spaces Lpω,
where ω is a Muckenhoupt weight (cf. [39]). The main result in [9] can be
formulated as follows.

Theorem 3.5. Let F be a family of ordered pairs of non-negative, measur-
able functions (f, g) and Ω ⊂ Rn be an open set. Let p be a bounded exponent
with p− > 1 and let 1 < q < p−. Suppose that

∫

Rn

f(x)qω(x) dx ≤ K(ω)
∫

Rn

g(x)qω(x) dx

holds for all (f, g) ∈ F and all Muckenhoupt weights ω ∈ A1 with an A1-
consistent constant K(ω). Here we suppose that the left-hand side is finite.
If p/q ∈ P, then for all (f, g) ∈ F such that f ∈ Lp(·)(Ω),

‖f‖p(·) ≤ C‖g‖p(·).

From this theorem one can deduce that in variable exponent spaces singu-
lar integral operators associated with symmetric kernels are bounded, that
commutator estimates hold, that fractional integrals and fractional maximal
operators are bounded and that certain extension results hold (cf. [9]).

Moreover, one can extend the results of Bogovskii [5], [6] for the di-
vergence equation to variable exponent spaces (cf. Diening, Růžička [19],
Huber [31]).

Theorem 3.6. Let Ω ⊂ Rn be a domain with Lipschitz-continuous boundary
and let p, q ∈ P be bounded exponents with p−, q− > 1. Then for all f ∈
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W 1,p(·)(Ω)∩Lq(·)(Ω) there exists a solution v ∈W 1,p(·)
0 (Ω)∩Lq(·)(Ω) of the

equation div v = div f satisfying the estimates

‖∇v‖p(·) ≤ C‖div f‖p(·),
‖v‖q(·) ≤ C‖f‖q(·).

4. Application to ERFs

In this section we shortly summarize how the above theory of variable expo-
nent spaces can be used in the mathematical theory of ERFs. Using basic
properties of the variable exponent spaces and the theory of pseudomono-
tone operators it is shown in Růžička [51], Růžička, Ettwein [24] that
the steady problem, i.e. when the time derivative ∂tv in (2.2) is neglected,
has solutions.

Theorem 4.1. Let Ω ⊂ R3 be a bounded domain with Lipschitz-continuous
boundary. Let E ∈ W 1,∞(Ω) and f ∈

(
W

1,p(|E|2)
0 (Ω)

)′ and let S satisfy

(2.5)–(2.9). Then there exists a weak solution v ∈ W
1,p(|E|2)
0 (Ω) of the

steady problem (2.2) equipped with homogeneous Dirichlet boundary condi-
tions whenever

p∞ > 9/5.

Moreover, the solution satisfies for all U ⊂⊂ Ω

∫

U

(
1 + |D(v)|2

)p(|E|2)−2
2 |D(∇v)|2 dx <∞.

For the unsteady problem equipped with space periodic boundary condi-
tions and initial condition v(0) = v0 one can prove (cf. Růžička [50]):

Theorem 4.2. Let Ω = (0, L)3 be a given cube, I = [0, T ] a given time
interval and assume that v0 ∈ W 1,2

0 , div v0 = 0, E ∈ L∞(I,W 1,∞(Ω)),
and f ∈ Lr(I × Ω), r = max{p′∞, 2}, are given. Assume that S satisfies
(2.5)–(2.9). Whenever

9/5 < p∞ ≤ p(|E|2) ≤ p0 < p∞ + 1,

there exists a weak solution v ∈ L∞(I, L2(Ω)) ∩ Lp∞(I,W 1,p∞
0 (Ω)) of the

problem (2.2) such that D(v) ∈ Lp(|E|2)(I × Ω). Moreover, if

11/5 < p∞ ≤ p(|E|2) ≤ p0 < p∞ + 4/3,
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there exists a unique solution of the problem (2.2) with the additional property

∫

I

∫

Ω

(
1 + |D(v)|2

)p(|E|2)−2
2 |D(∇v)|2 dx dt <∞.

In the case of Dirichlet boundary conditions one has to require more
restrictive conditions on p(|E|2) to ensure the validity of a similar theorem
(cf. Růžička [51]).

The idea of using L∞-testfunctions presented in [25], [49] was extended
to the treatment of ERFs by Huber [31].

Theorem 4.3. Under the assumptions of Theorem 4.1 there exists a weak
solution of the steady problem (2.2) whenever

p∞ > 3/2.

Also the Lipschitz approximation technique from [27] can be applied to the
treatment of ERFs. Diening, Málek, Steinhauer [17] further extended
the previous theorem to the following:

Theorem 4.4. Under the assumptions of Theorem 4.1 there exists a weak
solution of the steady problem (2.2) whenever

p∞ > 6/5.

5. Shifted Orlicz functions

For a better understanding of the structure of the elliptic part of the problem
(2.2), (2.5) it is useful to study the model case

−div(A(∇v)) = f in Ω,
v = 0 on ∂Ω,

(5.1)

where A(P) := |P|p−2P, 1 < p < ∞, for P ∈ RN×n. The natural energy
space for this problem is the Sobolev space W 1,p

0 (Ω), since

A(P) ·P = |P|p.

By standard methods one obtains the existence of a unique weak solution
v ∈W 1,p

0 (Ω) of (5.1) under appropriate assumptions on f . However, it turns
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out that the Sobolev space W 1,p(Ω) is not the correct setting for a more
detailed investigation of this solution such as its regularity properties and
error estimates for an FEM approximation. In fact, many of such results are
based on the behaviour of the quantity

(A(P)−A(Q)) · (P−Q)

which is equivalent (see below) to

(|P|+ |P−Q|)p−2|P−Q|2. (5.2)

This information can not be expressed in terms of a Lebesgue space, however
it leads to an Orlicz space. In fact, (5.2) can be written as P−Q ∈ Lϕ|P|(Ω),
with the N-function ϕa(t) ≈ (a+ t)p−2t2, a, t ≥ 0. Such functions are called
shifted N-functions and will be defined precisely below. Thus already the
pure p-Laplace problem leads naturally to the study of Orlicz and Orlicz–
Sobolev spaces. This property becomes even more evident if one investigates
(5.1) with the operator A(P) := (κ + |P|)p−2P, κ ≥ 0, 1 < p < ∞, P ∈
RN×n. The natural energy space for this problem isW 1,ϕκ

0 (Ω). Motivated by
this we present some results related to the functional setting of the problem
(5.1) where the operator A has N-potential ϕ (cf. Section 6) or ϕ-structure
for some N-function ϕ (cf. Section 7). In Section 8 the modifications for the
treatment of problems from fluid mechanics are discussed.

Before we define shifted N-functions we recall some basic facts about
N-functions. For more details we refer to Krasnosel’skii, Rutickii[35].
A function ϕ : R≥0 → R≥0 is called N-function if it is continuous, convex
and such that limt→0

ϕ(t)
t = 0, limt→∞

ϕ(t)
t = ∞, and ϕ(t) > 0 for t > 0.

In the following we use the convention that ϕ(0)
0 := 0. An N-function ϕ

possesses a right derivative, denoted by ϕ′, which is right continuous, non-
decreasing, and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0 and limt→∞ ϕ′(t) = ∞.
Moreover, the representation

ϕ(t) =
∫ t

0

ϕ′(s) ds (5.3)

holds. Formula (5.3) for a function ϕ′ with the above properties could be
taken as an equivalent definition of an N-function. The right inverse of ϕ′ is
denoted by (ϕ′)−1 : R≥0 → R≥0 and defined through

(ϕ′)−1(t) := sup{u ∈ R≥0 | ϕ′(u) ≤ t}.
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The complementary function ϕ∗ of ϕ is defined by

ϕ∗(t) :=
∫ t

0

(ϕ′)−1(s) ds. (5.4)

It is easily seen that ϕ∗ is again an N-function and that for t ≥ 0 holds
(ϕ∗)′(t) = (ϕ′)−1(t).

Note that (ϕ∗)∗ = ϕ. Since (ϕ′)−1 is the right inverse, we have
(ϕ∗)′(ϕ′(t)− ε) ≤ t ≤ (ϕ∗)′(ϕ′(t)),

ϕ′((ϕ∗)′(t)− ε) ≤ t ≤ ϕ′((ϕ∗)′(t))
(5.5)

for all t > 0 and all sufficiently small ε > 0. If ϕ′ is strictly increasing, than
(ϕ′)−1 is the inverse function of ϕ′. The complementary function ϕ∗ of ϕ
could equivalently be defined by

ϕ∗(t) := sup{ut− ϕ(u) | u ∈ R≥0}. (5.6)
From (5.6) follows immediately Young’s inequality, i.e. for all t, u ≥ 0,

tu ≤ ϕ(t) + ϕ∗(u). (5.7)
Choosing ϕ(t) = ϕ∗(u) = v in this inequality, we obtain

ϕ−1(v) (ϕ∗)−1(v) ≤ 2v. (5.8)
Since ϕ′ is non-decreasing it follows from (5.3) that

ϕ(t) ≤ tϕ′(t) (5.9)
for t ≥ 0 with strict inequality for t > 0, which yields

(ϕ′)−1
(ϕ(t)

t

)
≤ t

for t ≥ 0 by the properties of (ϕ′)−1 (cf. (5.5)). From this and (5.9) we
obtain

ϕ∗
(ϕ(t)

t

)
=

∫ ϕ(t)
t

0

(ϕ′)−1(s) ds ≤ ϕ(t)
t

(ϕ′)−1
(ϕ(t)

t

)
≤ ϕ(t).

Choosing ϕ(t) = u we get

u ≤ ϕ−1(u) (ϕ∗)−1(u).
Further we have

ϕ(2t) ≥
∫ 2t

t

ϕ′(s) ds ≥ tϕ(t).

If we denote v = ϕ(t), then we deduce from (5.8) (ϕ∗)−1(ϕ(t)) ≤ 2ϕ(t)/t,
which implies

ϕ(t) ≤ ϕ∗
(2ϕ(t)

t

)
.

Thus we proved:
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Lemma 5.1. Let ϕ be an N-function and ϕ∗ its complementary function.
Then we have for all t ≥ 0

t ≤ ϕ−1(t) (ϕ∗)−1(t) ≤ 2t, (5.10)

ϕ(t) ≤ tϕ′(t) ≤ ϕ(2t), (5.11)

ϕ∗
(ϕ(t)

t

)
≤ ϕ(t) ≤ ϕ∗

(2ϕ(t)
t

)
. (5.12)

Note that the second inequalities in (5.10), (5.12) turn into equalities for
ϕ(t) = 1

2 t
2, while the first inequalities in (5.10), (5.11), (5.12) are optimal

in the limit pց 1 for ϕ(t) = 1
p t
p. The last inequality in (5.11) is optimal in

the limit tց 1 and εց 0 for ϕ(t) = ε
2 t

2 + (t− 1)+.
Using (5.11) for ϕ∗ and (5.5) we obtain for sufficiently small ε > 0 that

ϕ∗(ϕ′(t)− ε) ≤ (ϕ′(t)− ε) (ϕ∗)′(ϕ′(t)− ε) ≤ (ϕ′(t)− ε)t ≤ ϕ(2t)− εt,

which in the limit ε→ 0 implies

ϕ∗(ϕ′(t)) ≤ ϕ(2t). (5.13)

An important subclass of N-functions are those satisfying the ∆2-con-
dition, i.e. functions ϕ satisfying for all t ≥ 0 the estimate ϕ(2t) ≤ Kϕ(t)
with a constant K ≥ 2. The ∆2-constant of ϕ is the smallest constant K
having this property. Since ϕ is increasing, for N-functions satisfying the
∆2-condition we have

ϕ(t) ≤ ϕ(2t) ≤ Kϕ(t). (5.14)

From (5.11) it follows that ϕ′ also satisfies the ∆2-condition since

ϕ′(2t) ≤ ϕ(4t)
2t

≤ K2

2
ϕ(t)
t

≤ K2

2
ϕ′(t). (5.15)

The inequalities (5.11), (5.14) imply

ϕ(t) ≤ tϕ′(t) ≤ Kϕ(t) (5.16)

for ϕ satisfying the ∆2-condition. For ϕ and ϕ∗ satisfying the ∆2-condition
we deduce from (5.12), (5.11) and (5.13) that

1
K∗

ϕ(t) ≤ 1
K∗

ϕ∗
(2ϕ(t)

t

)
≤ ϕ∗(ϕ′(t)) ≤ ϕ(2t) ≤ Kϕ(t). (5.17)
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In the following we denote by K, K ′, K∗ and K ′
∗ the ∆2-constants of

of ϕ, ϕ′, ϕ∗ and (ϕ∗)′, respectively. We can now get a useful version of
Young’s inequality if ϕ or ϕ∗ satisfies the ∆2-condition. If ϕ∗ satisfies the
∆2-condition, then

tu ≤ δϕ(t) +KM
∗ ϕ∗(u)

for all δ ∈ (0, 1) and M ∈ N such that δ−1 ≤ 2M . Here we used that, by the
convexity of ϕ,

ϕ(δt) ≤ δϕ(t) (5.18)

for δ ∈ [0, 1] and all t ≥ 0. Analogously, for ϕ satisfying the ∆2-condition
we obtain that for all δ ∈ (0, 1),

tu ≤ δϕ∗(u) +KMϕ(t)

with M ∈ N such that δ−1 ≤ 2M .

Lemma 5.2. Let the N-function ϕ satisfy the ∆2-condition. Then we have

K ≤ 2K ′ ≤ K2. (5.19)

Proof. The last inequality is proved in (5.15), while the first one follows
from

ϕ(2t) =
∫ 2t

0

ϕ′(s) ds =
∫ t

0

ϕ′(2s) 2ds ≤ 2K ′
∫ t

0

ϕ′(s) ds = 2K ′ϕ(t).

�
Note that in the first inequality in (5.19) equality holds for ϕ(t) = 1

p t
p.

Moreover, (5.19) implies that K ′ ≥ 1, since K ≥ 2. The proof of Lemma 5.2
also implies that an N-function ϕ, for which ϕ′ satisfies the ∆2-condition,
also satisfies the ∆2-condition.

Now we will define shifted N-functions ϕa. For a given N-function ϕ we
set

ϕ′a(t) = (ϕa)′(t) :=
ϕ′(t+ a)
t+ a

t (5.20)

for a, t ≥ 0 and define ϕa : R≥0 → R≥0 through

ϕa(t) :=
∫ t

0

ϕ′a(s) ds. (5.21)
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Lemma 5.3. Let the N-function ϕ satisfy the ∆2-condition. Then for all
a ≥ 0 the functions ϕa defined in (5.21) are N-functions satisfying the
∆2-condition. The ∆2-constants Ka and K ′

a of ϕa and ϕ′a, respectively,
satisfy the inequalities

Ka ≤ 2K ′
a ≤ 4K ′ ≤ 2K2. (5.22)

Proof. We have ϕ0 = ϕ and thus we can assume in the sequel that a > 0.
From the definition of ϕa(t) in (5.20) it is clear that it is a right continuous
function. Moreover, ϕ′(t + a) and t

t+a are non-decreasing with respect to t
and thus also ϕ′a is non-decreasing. The properties of ϕ′ imply immediately
ϕ′a(0) = 0, ϕ′a(t) > 0 for t > 0 and limt→∞ ϕ′a(t) = ∞. From

ϕ′a(2t) =
ϕ′(a+ 2t)2t
a+ 2t

≤ ϕ′(2(a+ t))2t
a+ t

≤ 2K ′ϕ′a(t)

it follows K ′
a ≤ 2K ′, which with the help of (5.19) implies (5.22). �

In view of the above lemma we call ϕa the shifted N-function.
We need some inequalities between the shifted N-function ϕa and the

N-function ϕ itself.

Lemma 5.4. Let ϕ be an N-function and let M ∈ N. Then for all t ≥
a(2M − 1)−1,

1
2M

ϕ′(t) ≤ ϕ′a(t) ≤ ϕ′(2M t),

where the second inequality is strict for a > 0.

Proof. Since ϕ′ is non-decreasing, we have

ϕ′a(t) =
ϕ′(a+ t)
a+ t

t ≤ ϕ′(2M t)
t

t = ϕ′(2M t),

ϕ′a(t) =
ϕ′(a+ t)
a+ t

t ≥ ϕ′(t)
2M t

t =
1

2M
ϕ′(t),

which proves the assertion. �
Lemma 5.5. Let ϕ be an N-function, a > 0, and let M ∈ N. Then for all
0 ≤ t ≤ a(2M − 1),

1
2M

ϕ′(a)
a

t ≤ ϕ′a(t) ≤
ϕ′(2Ma)

a
t,

where the second inequality is strict if t > 0.
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Proof. We have

ϕ′a(t) =
ϕ′(a+ t)
a+ t

t ≤ ϕ′(2Ma)
a

t,

ϕ′a(t) =
ϕ′(a+ t)
a+ t

t ≥ ϕ′(a)
2Ma

t,

which proves the assertion. Note that for t > 0 it holds t
a+t <

t
a . �

Lemma 5.6. Let ϕ be an N-function. Then

ϕ′a(t− ε) ≤ ϕ′(2t− ε)

for all a, t and ε such that 0 ≤ a ≤ t and 0 < ε < t, and

ϕ′a(t− ε) ≤ ϕ′(2a− ε)
a

t (5.23)

for all a, t and ε such that 0 < t ≤ a and 0 < ε < t.

Proof. If 0 ≤ a ≤ t and 0 < ε < t then

ϕ′a(t− ε) =
ϕ′(a+ t− ε)
a+ t− ε

(t− ε) ≤ ϕ′(2t− ε),

and, similarly,

ϕ′a(t− ε) =
ϕ′(a+ t− ε)
a+ t− ε

(t− ε) ≤ ϕ′(a+ t− ε)
a+ t

t ≤ ϕ′(2a− ε)
a

t

if 0 < t ≤ a and 0 < ε < t. �

Now we want to investigate the complementary function (ϕa)∗ of a shifted
N-function ϕa and derive a relation to some shifted complementary N-funct-
ion (ϕ∗)b.

Lemma 5.7. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then for all a, t ≥ 0,

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≤ 2K ′

∗K
′t.

Proof. For t = 0 the assertion is obvious. Thus we consider in the following
only the case t > 0. For a = 0 and sufficiently small ε > 0, using (5.5), we
have

(ϕ∗)′(ϕ′(t)) ≤ K ′
∗ (ϕ∗)′

(
1
2ϕ

′(t)
)
≤ K ′

∗ (ϕ∗)′(ϕ′(t)− ε) ≤ K ′
∗t.
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For t ≥ a > 0 we have ϕ′a(t) ≤ ϕ′(2t). Taking sufficiently small ε > 0,
Lemma 5.4 applied with M = 1 first for ϕ′a and then once more for (ϕ∗)′ϕ′(a)
and the first inequality in (5.5) with 2t in place of t yield

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≤ (ϕ∗)′ϕ′(a)(ϕ

′(2t)− ε) ≤ (ϕ∗)′(2(ϕ′(2t)− ε)) ≤ 2K ′
∗t.

For 0 < t ≤ a/K ′ we have ϕ′a(t) ≤ ϕ′a(a) and ϕ′(2a)t/a ≤ ϕ′(a). Lemma 5.5
applied with M = 1 for ϕ′a, (5.23) and (5.5) yield

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≤ (ϕ∗)′ϕ′(a)

(
ϕ′(2a)

t

a
− ε

)

≤ (ϕ∗)′(2ϕ′(a)− ε)
ϕ′(a)

ϕ′(2a)
t

a

≤ K ′
∗K

′t

for sufficiently small ε > 0. For a/K ′ ≤ t ≤ a we have ϕ′a(t) ≤ ϕ′a(a) and
thus, using the above result for the case t ≥ a and (5.5), we obtain

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≤ (ϕ∗)′ϕ′(a)(ϕ

′
a(a)) ≤ 2K ′

∗a ≤ 2K ′
∗K

′t.

This proves the assertion. �
Lemma 5.8. Let ϕ∗ be an N-function satisfying the ∆2-condition. Then
for all a, t ≥ 0,

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≥

1
2K ′∗

t.

Proof. For t ≥ a we have ϕ′(t) ≥ ϕ′(a). Applying Lemma 5.4 with M = 1
first for ϕ′a and then once more for (ϕ∗)′ϕ′(a) and (5.5) we obtain

(ϕ∗)′ϕ′(a)(ϕ
′
a(t)) ≥ (ϕ∗)′ϕ′(a)

(1
2
ϕ′(t)

)
≥ 1
K ′∗

(ϕ∗)′ϕ′(a)(ϕ
′(t))

≥ 1
2K ′∗

(ϕ∗)′(ϕ′(t)) ≥ 1
2K ′∗

t.

For t ≤ a we have ϕ′(a)t/a ≤ ϕ′(a). Lemma 5.5 applied with M = 1 first
for ϕ′a and then again for (ϕ∗)′ϕ′(a) together with (5.5) yield

(ϕ∗)′ϕ′(a)
(
ϕ′a(t)

)
≥ (ϕ∗)′ϕ′(a)

(ϕ′(a)t
2a

)
≥ 1
K ′∗

(ϕ∗)′ϕ′(a)
(ϕ′(a)t

a

)

≥ 1
K ′∗

(ϕ∗)′(ϕ′(a))
2ϕ′(a)

ϕ′(a)t
a

≥ 1
2K ′∗

t.
�
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Lemma 5.9. Let ϕ∗ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then for all a, u ≥ 0,

1
2K ′∗K ′ (ϕ∗)′ϕ′(a)(u) ≤ ((ϕa)∗)′(u) ≤ 2K ′

∗(ϕ
∗)′ϕ′(a)(u), (5.24)

1
2K ′∗K ′ (ϕ∗)ϕ′(a)(u) ≤ (ϕa)∗(u) ≤ 2K ′

∗(ϕ
∗)ϕ′(a)(u). (5.25)

Proof. Setting t = ((ϕa)∗)′(u)− ε in Lemma 5.8 and using (5.5) we have

((ϕa)∗)′(u)− ε ≤ 2K ′
∗(ϕ

∗)′ϕ′(a)
(
ϕ′a

(
((ϕa)∗)′(u)− ε

))
≤ 2K ′

∗(ϕ
∗)′ϕ′(a)(u).

The limit ε → 0 implies the second inequality in (5.24). By setting t =
((ϕa)∗)′(u) in Lemma 5.7 and using (5.5) we obtain

(ϕ∗)′ϕ′(a)(u) ≤ (ϕ∗)′ϕ′(a)
(
ϕ′a

(
((ϕa)∗)′(u)

))
≤ 2K ′

∗K
′((ϕa)∗)′(u),

which yields the first inequality in (5.24). From (5.24) and (5.4) we obtain
(5.25). �

Lemma 5.10. Let ϕ∗ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then

(ϕa)∗(2t) ≤ 16(K ′
∗)

2(K ′)2(ϕa)∗(t) (5.26)

for all a, t ≥ 0, i.e., the ∆2-constants of (ϕa)∗ are bounded uniformly for
a ≥ 0, depending only on K ′

∗ and K ′.

Proof. This follows immediately from Lemma 5.9 and (5.22). �

Now we want to investigate how shifted N-functions behave if the shift is
changed. In view of the applications we derive tensor-valued versions.

Lemma 5.11. Let ϕ be an N-function satisfying the ∆2-condition. Then
for all P,Q ∈ RN×n,

1
2K ′ ϕ

′
|P|(|P−Q|) ≤ ϕ′|Q|(|P−Q|) ≤ 2K ′ϕ′|P|(|P−Q|),

1
8(K ′)2

ϕ|P|(|P−Q|) ≤ ϕ|Q|(|P−Q|) ≤ 8(K ′)2ϕ|P|(|P−Q|).
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Proof. The assertion is clear for P = Q. Thus we can assume |P−Q| > 0.
From the obvious estimates 1

2 (|Q|+|P−Q|) ≤ |P|+|P−Q| ≤ 2(|Q|+|P−Q|)
we get

ϕ′|P|(|P−Q|) = ϕ′(|P|+ |P−Q|) |P−Q|
|P|+ |P−Q|

≤ K ′ϕ′(|Q|+ |P−Q|) 2|P−Q|
|Q|+ |P−Q|

= 2K ′ϕ′|Q|(|P−Q|).

The assertion now follows by the symmetry, by the use of (5.16) for ϕ|Q| and
of (5.22). �

Remark 5.12. Applying Lemma 5.11 to P = |P|G and Q = |Q|G where
|G| = 1 we obtain that

1
2K ′ ϕ

′
|P|

(∣∣|P| − |Q|
∣∣) ≤ ϕ′|Q|

(∣∣|P| − |Q|
∣∣) ≤ 2K ′ϕ′|P|

(∣∣|P| − |Q|
∣∣),

1
8(K ′)2

ϕ|P|
(∣∣|P| − |Q|

∣∣) ≤ ϕ|Q|
(∣∣|P| − |Q|

∣∣)

≤ 8(K ′)2ϕ|P|
(∣∣|P| − |Q|

∣∣).
(5.27)

Lemma 5.13. Let ϕ be an N-function satisfying the ∆2-condition. Then
for all P,Q ∈ RN×n and all t ≥ 0,

ϕ′|P|(t) ≤ 2K ′ϕ′|Q|(t) + ϕ′|P|(|P−Q|). (5.28)

Proof. For |P − Q| ≤ t we have 0 ≤ 1
2 (|Q| + t) ≤ |P| + t ≤ 2(|Q| + t).

Hence,

ϕ′|P|(t) =
ϕ′(|P|+ t)
|P|+ t

t ≤ ϕ′(2(|Q|+ t))
1
2 (|Q|+ t)

t ≤ 2K ′ ϕ
′(|Q|+ t)
|Q|+ t

t = 2K ′ϕ′|Q|(t).

For |P−Q| ≥ t we have

ϕ′|P|(t) ≤ ϕ′|P|(|P−Q|)

since ϕ′|P| is non-decreasing. Combining both cases we obtain (5.28). �
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Remark 5.14. From Lemmas 5.11 and 5.13 it follows that for all P,Q ∈
RN×n and all t ≥ 0 we have

ϕ′|P|(t) ≤ 2K ′ϕ′|Q|(t) + 2K ′ϕ′|Q|(|P−Q|).
Similarly as in Remark 5.12 we obtain that also

ϕ′|P|(t) ≤ 2K ′ϕ′|Q|(t) + ϕ′|P|
(∣∣|P| − |Q|

∣∣), (5.29)

ϕ′|P|(t) ≤ 2K ′ϕ′|Q|(t) + 2K ′ϕ′|Q|
(∣∣|P| − |Q|

∣∣). (5.30)

Lemma 5.15 (Change of shift). Let ϕ be an N-function such that ϕ and ϕ∗

satisfy the ∆2-condition. Then for all δ ∈ (0, 1), P,Q ∈ RN×n and t ≥ 0,
the inequalities

ϕ|P|(t) ≤
(
1 + 2(4K ′)M

)
ϕ|Q|(t) + δϕ|Q|

(∣∣|P| − |Q|
∣∣), (5.31)

ϕ|P|(t) ≤
(
1 + 2(4K ′)M

)
ϕ|Q|(t) + δϕ|Q|(|P−Q|) (5.32)

hold, where M ∈ N is such that 8(K ′)2/δ ≤ 2M .

Proof. By (5.11) and (5.30) we have

ϕ|P|(t) ≤ ϕ′|P|(t)t ≤ 2K ′ϕ′|Q|(t)t+ 2K ′ϕ′|Q|
(∣∣|P| − |Q|

∣∣)t =: I1 + I2.

For I2 we deduce from (5.7), (5.18), (5.17) and (5.22) that

I2 ≤ (ϕ|Q|)∗
( δ

4K ′ϕ
′
|Q|

(∣∣|P| − |Q|
∣∣)

)
+ ϕ|Q|

(8K ′K ′

δ
t
)

≤ δϕ|Q|
(∣∣|P| − |Q|

∣∣) + (4K ′)Mϕ|Q|(t),

where M ∈ N is such that 8(K ′)2/δ ≤ 2M . Further we have

I1 ≤ ϕ∗|Q|

( 1
4K ′ϕ

′
|Q|(t)

)
+ ϕ|Q|

(
8(K ′)2t

)
≤ ϕ|Q|(t) + (4K ′)Mϕ|Q|(t).

This proves (5.31). The inequality (5.32) follows immediately from (5.31).
�

Remark 5.16. One can prove in the same way, using additionally (5.27)
in the estimate of I2, that if ϕ is an N-function such that ϕ and ϕ∗ satisfy
the ∆2-condition, then for all δ ∈ (0, 1), all P,Q ∈ RN×n and all t ≥ 0 the
inequalities

ϕ|P|(t) ≤
(
1 + 2(4K ′)M

)
ϕ|Q|(t) + δϕ|P|

(∣∣|P| − |Q|
∣∣),

ϕ|P|(t) ≤
(
1 + 2(4K ′)M

)
ϕ|Q|(t) + δϕ|P|(|P−Q|)

hold, where M ∈ N is now such that 64(K ′)4/δ ≤ 2M .
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In order to extend Lemma 5.13 and Lemma 5.15 and its versions in the
remarks to complementary shifted N-functions we need an additional as-
sumption, namely that there exists a constant γ0 such that for all s, t ≥ 0,

∣∣ϕ′(s+ t)− ϕ′(t)
∣∣ ≤ γ0ϕ

′
t(s). (5.33)

This assumption is closely related to the continuity properties of the operator
possessing an N-potential ϕ (cf. (6.1) and Remark 6.9) and can be also
written in a more conventional way as

∣∣ϕ′(s+ t)− ϕ′(t)
∣∣ ≤ γ0

ϕ′
(
s+ t

)

s+ t
s.

In particular, these assumptions imply that ϕ′ is continuous on R≥0 and
locally Lipschitz-continuous on (0,∞).

Lemma 5.17. Let ϕ∗ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition and let ϕ′ satisfy (5.33). Then the inequalities

((ϕ|P|)∗)′(t) ≤ 8K ′(K ′
∗)

3((ϕ|Q|)∗)′(t) +K ′(2K ′
∗)
L+2

∣∣|P| − |Q|
∣∣, (5.34)

((ϕ|P|)∗)′(t) ≤ 8K ′(K ′
∗)

3((ϕ|Q|)∗)′(t) +K ′(2K ′
∗)
L+2|P−Q| (5.35)

hold for all P,Q ∈ RN×n and t ≥ 0, where L ∈ N is such that γ0 < 2L.

Proof. Choose L ∈ N such that γ0 < 2L. Using Lemma 5.9, the estimate
(5.29) for (ϕ∗)′ϕ′(|P|)(t), (5.33), Lemma 5.9, the ∆2-condition for ((ϕ|P|)∗)′,
(5.22) and (5.5) we obtain

((ϕ|P|)∗)′(t) ≤ 2K ′
∗(ϕ

∗)′ϕ′(|P|)(t)

≤ 4(K ′
∗)

2(ϕ∗)′ϕ′(|Q|)(t) + 2K ′
∗(ϕ

∗)′ϕ′(|P|)
(∣∣ϕ′(|P|)− ϕ′(|Q|)

∣∣)

≤ 4(K ′
∗)

2(ϕ∗)′ϕ′(|Q|)(t) + 2K ′
∗(ϕ

∗)′ϕ′(|P|)
(
γ0 ϕ

′
|P|

(∣∣|P| − |Q|
∣∣))

≤ 8K ′(K ′
∗)

3((ϕ|Q|)∗)′(t) + 4K ′(K ′
∗)

2((ϕ|P|)∗)′
(
γ0 ϕ

′
|P|

(∣∣|P| − |Q|
∣∣))

≤ 8K ′(K ′
∗)

3((ϕ|Q|)∗)′(t) +K ′(2K ′
∗)
L+2

∣∣|P| − |Q|
∣∣.

Inequality (5.35) follows immediately from (5.34). �
Lemma 5.18 (Change of shift). Let ϕ be an N-function such that ϕ and
ϕ∗ satisfy the ∆2-condition and let ϕ′ satisfy (5.33). Then the inequalities

(ϕ|P|)∗(t) ≤
(
4K ′

∗ + (4K ′
∗)
I + (4K ′

∗)
J
)
(ϕ|Q|)∗(t) + δϕ|Q|

(∣∣|P| − |Q|
∣∣),

(ϕ|P|)∗(t) ≤
(
4K ′

∗ + (4K ′
∗)
I + (4K ′

∗)
J
)
(ϕ|Q|)∗(t) + δϕ|Q|(|P−Q|)

hold for all δ ∈ (0, 1), P,Q ∈ RN×n and t ≥ 0, where I, J ∈ N are such that
8K ′(K ′

∗)
3 ≤ 2I and δ−1K ′(2K ′

∗)
L+2 ≤ 2J with L from Lemma 5.17.

Proof. We proceed as in the proof of Lemma 5.15. �
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The following lemma quantifies the known fact that an N-function growths
faster than linearly.

Lemma 5.19. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then for all κ ∈

(
1
2 (logK∗(

3
4K∗) + 1), 1

)
there exists an

N-function ρκ such that for all t ≥ 0

ρκ(t) ≤ (ϕ(t))κ ≤ K4
∗

4
KκMρκ(t) (5.36)

holds, where M ∈ N is such that K2
∗/2 ≤ 2M . Moreover, ρκ satisfies the

∆2-condition, i.e.,

ρκ(2t) ≤ K4
∗

4
Kκ(1+M)ρκ(t)

holds for all t ≥ 0. Let κ0 be such that (K∗/2)1−κ0 = 2. Then for all
κ ∈ (κ0, 1) the complementary function (ρκ)∗ also satisfies the ∆2-condition,
i.e., for all t ≥ 0,

(ρκ)∗(2t) ≤ 2
(
K∗
2

)m
(ρκ)∗(t),

where m ∈ N is such that (K4
∗/2K)κM

(
2−1/2(K∗/2)(1−κ)/2

)m ≤ 1.

Proof. In [35, Theorem 1.4.2] it is shown that the ∆2-condition for ϕ∗, i.e.
ϕ∗(2t) ≤ K∗ϕ∗(t), is equivalent to the condition

ϕ(t) ≤ 1
K∗

ϕ

(
K∗
2
t

)
. (5.37)

The proofs of [33, Lemma 1.2.2, Lemma 1.2.3] imply that for all 0 < t1 < t2
and all α ∈

(
logK∗(

3
4K∗), 1)

(ϕ(t1))α

t1
≤ K2

∗
2

(
ϕ
(
K2
∗

2 t2

))α

t2
.

This in turn implies due to [33, Lemma 1.1.1] that there exists a convex
function ρα such that

ρα(t) ≤ (ϕ(t))α ≤ K2
∗

2
ρα

(
K2
∗

2
t

)

for all t ≥ 0. Since ϕ satisfies the ∆2-condition this yields

ρα(t) ≤ (ϕ(t))α ≤ K4
∗

4
KαMρα(t), (5.38)
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where M ∈ N is such that K2
∗ ≤ 2M+1. If α is in the above interval then

κ := (1 + α)/2 lies in the same interval. Using (5.38) once for κ and once
for α, the convexity of ρα and that fact that ϕ is an N-function, we deduce
for t→ 0

ρκ(t)
t

≤ (ϕ(t))(1+α)/2

t
≤

√
ϕ(t)
t

√
(ϕ(t))α

t

≤
√
ϕ(t)
t

K2
∗

2

√
KαM

√
ρα(1) → 0,

and for t→∞

ρκ(t)
t

≥ 1
KαM

4
K4∗

√
ϕ(t)
t

√
(ϕ(t))α

t
≥ 1
KαM

4
K4∗

√
ϕ(t)
t

√
ρα(1) →∞.

This proves that ρκ is an N-function. From (5.38) we also deduce

ρκ(2t) ≤ (ϕ(2t))κ ≤ Kκ(ϕ(t))κ ≤ K4
∗

4
Kκ(1+M)ρκ(t),

which shows that ρκ satisfies the ∆2-condition. In order to verify that (ρκ)∗

satisfies the ∆2-condition we check the equivalent condition that there exists
a > 1 such that ρκ(t) ≤ ρκ(at)/(2a) for all t ≥ 0. Since ϕ∗ satisfies the
∆2-condition, using the convexity of ϕ and (5.38), we get for a := K∗/2

ρκ(t) ≤
√
ϕ(t)

√
(ϕ(t))α ≤

√
ϕ(amt)
(2a)m

√
(ϕ(amt))α

aαm

≤ K4
∗

2
KκM

(
a(1−κ)/2
√

2

)m
ρκ(amt)

2am
≤ ρκ(amt)

2am
.

In order to justify the last step we proceed as follows: First we choose κ0

such that a1−κ0 = 2. For κ ∈ (κ0, 1) we then choose m ∈ N large enough

such that K4
∗ K

κM
(
a(1−κ)/2/

√
2
)m

/2 ≤ 1. �

Complementarily to condition (5.37) we give an equivalent condition for
(ϕ∗)′ to satisfy the ∆2-condition in terms of ϕ′ only.

Lemma 5.20. Let ϕ be an N-function. Then (ϕ∗)′ satisfies the ∆2-con-
dition, i.e., (ϕ∗)′(2t) ≤ K ′

∗(ϕ
∗)′(t) for all t ≥ 0 if and only if

2ϕ′(t) ≤ ϕ′(K ′
∗t)

holds for all t ≥ 0.
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Proof. Assume that (ϕ∗)′(2t) ≤ K ′
∗(ϕ

∗)′(t) for all t ≥ 0. Using ϕ′ =
((ϕ∗)′)−1 we obtain for all t ≥ 0

2ϕ′(t) = 2 sup{u | (ϕ∗)′(u) ≤ t}
= sup{2u | K ′

∗(ϕ
∗)′(u) ≤ K ′

∗t}
≤ sup{2u | (ϕ∗)′(2u) ≤ K ′

∗t}
= sup{u | (ϕ∗)′(u) ≤ K ′

∗t}
= ϕ′(K ′

∗t).

Assume that 2ϕ′(t) ≤ ϕ′(K ′
∗t) for all t ≥ 0. Then we obtain for all t ≥ 0

(ϕ∗)′(2t) = sup{u | ϕ′(u) ≤ 2t}
= sup{K ′

∗u | ϕ′(K ′
∗u) ≤ 2t}

≤ sup{K ′
∗u | 2ϕ′(u) ≤ 2t}

= K ′
∗(ϕ

∗)′(t).

This proves the lemma. �
Let us finish this section with some improvements of (5.18).

Lemma 5.21. Let ϕ be an N-function satisfying the ∆2-condition. Then

ϕa(δa) ≤ δ2KK ′ϕ(a) (5.39)

holds for all δ ∈ [0, 1] and a ≥ 0.

Proof. We have

ϕa(δa) ≤ δaϕ′a(δa) = ϕ′(a+ δa)
δ2a2

a+ δa
≤ δ2K ′ϕ′(a)a ≤ δ2KK ′ϕ(a).

�
Lemma 5.22. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then

(ϕa)∗(δϕ′(a)) ≤ δ22K ′KK ′
∗K∗ϕ(a).

holds for all δ ∈ [0, 1] and a ≥ 0.

Proof. Using (5.39) and (5.17), we have

(ϕa)∗(δϕ′(a)) ≤ 2K ′(ϕ)∗ϕ′(a)(δϕ
′(a))

≤ δ22K ′K ′
∗K∗ϕ

∗(ϕ′(a))

≤ δ22K ′KK ′
∗K∗ϕ(a). �
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Lemma 5.23. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then

ϕ(δt) ≤
(
K4
∗

4

)1/κ

KMδ1/κϕ(t)

for all κ ∈
(
2−1(logK∗(3K∗/4)+1), 1

)
, t ≥ 0 and δ ∈ [0, 1], where M ∈ N is

such that K2
∗/2 ≤ 2M . In particular, for all κ ∈

(
2−1(logK̃∗

(3 K̃∗/4)+1), 1
)
,

t, a ≥ 0 and δ ∈ [0, 1], we have

ϕa(δt) ≤
(
K̃4
∗

4

)1/κ

2MK2Mδ1/κϕa(t), (5.40)

where K̃∗ = 16(K ′
∗)

2(K ′)2 (cf. (5.26)).

Proof. From (5.36) it follows for all t ≥ 0 and δ ∈ [0, 1] that

ϕ(δt) ≤
(
K4
∗

4

)1/κ

KM
(
ρκ(δt)

)1/κ

≤
(
K4
∗

4

)1/κ

KM
(
δρκ(t)

)1/κ

≤
(
K4
∗

4

)1/κ

KM δ1/κ ϕ(t),

where we have used the convexity of ρκ and ρκ(0) = 0. Now, (5.40) follows
from Lemma 5.10 and (5.22). �

6. Problems with N-potential

In this section we want to derive with the help of shifted N-functions some
useful results for problems with the N-potential ϕ. We say that the operator
A possesses an N-potential ϕ, where ϕ is some N-function, if A(0) = 0 and
for all P ∈ RN×n \ {0} holds

A(P) = Aϕ(P) :=
ϕ′(|P|)
|P| P. (6.1)

We also consider the more general situation, where A has no N-potential.
We say that the operator A has a ϕ-structure, where ϕ is an N-function, if
A(0) = 0 and there exist constants γ1, γ2 > 0 such that for all P,Q ∈ RN×n,

(A(P)−A(Q)) · (P−Q) ≥ γ1 ϕ
′
|P|(|P−Q|)|P−Q|, (6.2)

|A(P)−A(Q)| ≤ γ2 ϕ
′
|P|(|P−Q|). (6.3)
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From (6.2) and (6.3) one deduces by the Cauchy–Schwarz inequality that

γ1 ϕ
′
|P|(|P−Q|) ≤ |A(P)−A(Q)| ≤ γ2 ϕ

′
|P|(|P−Q|), (6.4)

γ1 ϕ
′
|P|(|P−Q|)|P−Q| ≤ (A(P)−A(Q)) · (P−Q)

≤ γ2 ϕ
′
|P|(|P−Q|)|P−Q|. (6.5)

If A has an N-potential ϕ or a ϕ-structure, we say that the associated elliptic
problem

−div(A(∇v)) = f in Ω,
v = 0 on ∂Ω,

has a ϕ-structure.
There are not many investigations of problems with a general ϕ-structure.

E.g., the contributions in [8], [22], [29], [37], [57] are devoted to the study of
PDEs in Orlicz–Sobolev spaces. However, the usage of shifted N-functions
in this context seems to be new.

Let A be an operator with an N-potential ϕ. We want to investigate
under which conditions on ϕ the operator A has a ϕ-structure. Let us start
with the following assumption:
Assumption 6.1. Let ϕ be an N -function such that ϕ and its complemen-
tary function ϕ∗ satisfy the ∆2-condition. Further, assume that ϕ is C1 on
[0,∞) and C2 on (0,∞) and that there exist constants 0 < γ3 ≤ 1, γ4 > 0
such that for all t > 0

γ3ϕ
′(t) ≤ tϕ′′(t) ≤ γ4ϕ

′(t). (6.6)

Remark 6.2. Note that under Assumption 6.1 we have that ϕ′′(t) > 0 for
all t > 0. Thus, ϕ′(t) is strictly increasing and (ϕ∗)′(t) = (ϕ′)−1(t) is the
inverse function of ϕ′(t).

Lemma 6.3. Let ϕ satisfy Assumption 6.1. Then for all P,Q ∈ RN×n with
|P|+ |Q| > 0,

γ3

2K ′ ϕ
′
|P|(|P−Q|) ≤ ϕ′′(|P|+ |Q|)|P−Q| ≤ 2K ′γ4 ϕ

′
|P|(|P−Q|).

Proof. Using 1
2 (|P| + |Q|) ≤ |P| + |P −Q| ≤ 2(|P| + |Q|) and (6.6) we

obtain

ϕ′|P|(|P−Q|) =
ϕ′(|P|+ |P−Q|)
|P|+ |P−Q| |P−Q|

≤ 2K ′ ϕ
′(|P|+ |Q|)
|P|+ |Q| |P−Q|

≤ 2K ′

γ3
ϕ′′(|P|+ |Q|) |P−Q|.
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The second inequality follows analogously. �

Thus, if ϕ satisfies Assumption 6.1, conditions (6.2) and (6.3) can be also
formulated with ϕ′′(|P|+ |Q|)|P−Q| instead of ϕ′|P|(|P−Q|).

Lemma 6.4. Let ϕ satisfy Assumption 6.1. Then also ϕ∗ statisfies As-
sumption 6.1. In particular, for all t > 0

1
γ4

(ϕ∗)′(t) ≤ t(ϕ∗)′′(t) ≤ 1
γ3

(ϕ∗)′(t).

Proof. Since ϕ′ is continuous on [0,∞) and increasing, we deduce from the
definition of (ϕ∗)′ that it also has these properties. From (ϕ∗)′(t) = (ϕ′)−1(t)
and the theorem on the derivative of inverse functions it follows that

(ϕ∗)′′(t) =
1

ϕ′′((ϕ∗)′(t))
, (6.7)

i.e., ϕ∗ is C2 on (0,∞). Moreover, from (6.7), (6.6) and (ϕ∗)′(t) = (ϕ′)−1(t),
we deduce for t > 0

(ϕ∗)′′(t) ≤ 1
γ3

(ϕ∗)′(t)
ϕ′((ϕ∗)′(t))

=
1
γ3

(ϕ∗)′(t)
t

.

The second inequality in (6.6) follows analogously. �

We need some auxiliary results.

Lemma 6.5. Let α > −1 and P,Q ∈ RN×n with |P|+ |Q| > 0. Then

c1(α)(|P|+ |Q|)α ≤
∫ 1

0

|θP + (1− θ)Q|α dθ ≤ c2(α)(|P|+ |Q|)α

with

c1(α) := min
{ 1
α+ 1

,
2−α

α+ 1
, 2−α

}
, c2(α) := max

{ 1
α+ 1

,
2−α

α+ 1
, 2−α

}
.

The constants c1 and c2 are optimal.

Proof. This results is essentially contained in [28] and proved with optimal
constants in [14]. �
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Lemma 6.6. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Then

1
K3

ϕ′(|P|+ |Q|)
|P|+ |Q| ≤

∫ 1

0

ϕ′(|θP + (1− θ)Q|)
|θP + (1− θ)Q| dθ

≤
(
K4
∗

4

)1/κ

KM+2c2
ϕ′(|P|+ |Q|)
|P|+ |Q|

holds for all P,Q ∈ RN×n with |P| + |Q| > 0, where κ and M are taken
from Lemma 5.19, and C − 2 = c2(κ).

Proof. From (5.11), the convexity of ϕ, Lemma 6.5 with α = 1, and again
(5.11) we derive

∫ 1

0

ϕ′(|θP + (1− θ)Q|)
|θP + (1− θ)Q| dθ ≥

∫ 1

0

ϕ(|θP + (1− θ)Q|)
(|P|+ |Q|)2 dθ

≥ 1
(|P|+ |Q|)2 ϕ

(∫ 1

0
|θP + (1− θ)Q| dθ

)

≥ ϕ
(

1
4 (|P|+ |Q|)

)

(|P|+ |Q|)2

≥ ϕ
(
2(|P|+ |Q|)

)

K3(|P|+ |Q|)2

≥ ϕ′(|P|+ |Q|)
K3(|P|+ |Q|) .

This proves the first part. Due to Lemma 5.19 and (5.16) we have

ϕ′(t) ≤ K
ϕ(t)
t

≤
(
K4
∗

4

)1/κ

KM+1 (ρκ(t))1/κ

t

≤
(
K4
∗

4

)1/κ

KM+1t1/κ−1
(
(ρκ)′(t)

)1/κ
,

from which, by the monotonicity of (ρκ)′, Lemma 6.5 with α := 1/κ − 2,
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(5.11) and Lemma 5.19, it follows
∫ 1

0

ϕ′(|θP + (1− θ)Q|)
|θP + (1− θ)Q| dθ

≤
(
K4
∗

4

)1/κ

KM+1

∫ 1

0

(
(ρκ)′(|P|+ |Q|)

)1/κ∣∣θP + (1− θ)Q
∣∣1/κ−2

dθ

≤
(
K4
∗

4

)1/κ

KM+1c2
(
(ρκ)′(|P|+ |Q|)

)1/κ(|P|+ |Q|
)1/κ−2

≤
(
K4
∗

4

)1/κ

KM+2c2
ϕ′(|P|+ |Q|)
|P|+ |Q| .

This proves the lemma. �
Lemma 6.7. Let A have the N-potential ϕ and let ϕ satisfy Assumption 6.1.
Then A has the ϕ-structure. In particular, A satisfies the inequalities (6.2)
and (6.3) with γ1 = 2γ3/(K3K ′), γ2 = 2(2+γ4)(n+N)(K4

∗/4)1/κKM+2c2K
′,

where κ ∈
(
2−1(logK∗(3K∗/4) + 1), 1

)
and M ∈ N is such that K2

∗ ≤ 2M+1.

Proof. Note that

Ajk(P)
∂Plm

=
ϕ′(|P|)
|P|

(
δjkδlm −

PjkPlm
|P|2

)
+ ϕ′′(|P|)Pjk|P|

Plm
|P| (6.8)

holds for all P ∈ RN×n \ {0} and all j, k, l, m. Especially, with (6.6) we
obtain for all j, k, l, m

∣∣∣∣
Ajk(P)
∂Plm

∣∣∣∣ ≤ 2
ϕ′(|P|)
|P| + ϕ′′(|P|) ≤ (2 + γ4)

ϕ′(|P|)
|P| . (6.9)

Moreover, for all j, k we have

Ajk(P)−Ajk(Q) =
∑

l,m

∫ 1

0

Ajk ([Q,P]θ)
∂Plm

(Plm −Qlm) dθ, (6.10)

where [Q,P]θ := (1 − θ)Q + θP. So by (6.9), Lemma 6.6, (6.6) and the
inequality 1

2 (|P|+ |Q|) ≤ |P|+ |P−Q| ≤ 2(|P|+ |Q|) we deduce

|A(P)−A(Q)| ≤ (2 + γ4)(n+N)
∫ 1

0

ϕ′(|[Q,P]θ|)
|[Q,P]θ|

dθ|P−Q|

≤ (2 + γ4)(n+N)c3
ϕ′(|P|+ |Q|)
|P|+ |Q| |P−Q|

≤ 2(2 + γ4)(n+N)c3K ′ϕ′|P|(|P−Q|),
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where c3 := (K4
∗/4)1/κKM+2c2. From (6.6), (6.10) and γ3 ≤ 1 we obtain for

G,B ∈ RN×n with G 6= 0,

∑

l,m,j,k

Bjk
Ajk(G)
∂Plm

Blm =
ϕ′(|G|)
|G|

(
|B|2 − |BG|2

|G|2
)

+ ϕ′′(|G|) |BG|2
|G|2

≥ γ3
ϕ′(|G|)
|G|

(
|B|2 − |BG|2

|G|2
)

+ γ3
ϕ′(|G|)
|G|

|BG|2
|G|2

≥ γ3
ϕ′(|G|)
|G| |B|2.

This, (6.10), Lemma 6.6, (5.11) and (5.16) imply

(
A(P)−A(Q)

)
· (P−Q) ≥ γ3

∫ 1

0

ϕ′([Q,P]θ)
|[P,Q]θ|

|P−Q|2 dθ

≥ γ3

K3

ϕ′(|P|+ |Q|)
|P|+ |Q| |P−Q|2

≥ 2γ3

K3K ′ ϕ
′
|P|(|P−Q|) |P−Q|.

This proves the lemma. �
We now want to establish the assertions of Lemma 6.7 under weaker

requirements on ϕ than Assumption 6.1. For that we define another shifted
N-function ϕ[a] by setting

ϕ′[a](t) := ϕ′(a+ t)− ϕ′(a)

for all a, t ≥ 0.

Lemma 6.8. Let the operator A have the N-potential ϕ and the ϕ-structure.
Then

γ1ϕ
′
a(t) ≤ ϕ′[a](t) ≤ γ2ϕ

′
a(t) (6.11)

holds for all a, t ≥ 0.

Proof. Since A has N-potential ϕ we obtain for Q = (t + a)R, P = aR
with |R| = 1 and the definition of ϕ′[a] that

ϕ′[a](t) = |A(P)−A(Q)|,
ϕ′a(t) = ϕ′|P|(|P−Q|).

The assertion now follows from (6.4). �
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Remark 6.9. Note, that if the operator A has an N-potential ϕ and
a ϕ-structure, then the constants γ1, γ2 have to satisfy γ1 ≤ 1 ≤ γ2. This
follows from (6.11) by letting a→ 0.

If A possesses an N-potential ϕ, then the tensor-valued inequality (6.3)
follows already from the scalar inequality (5.33). Indeed, if ϕ satisfies (5.33),
we have for all P,Q ∈ RN×n with |P| ≥ |Q|

∣∣A(P)−A(Q)
∣∣ =

∣∣∣∣
ϕ′(|P|)
|P| P− ϕ′(|Q|)

|Q| Q
∣∣∣∣

≤
∣∣ϕ′(|P|)− ϕ′(|Q|)

∣∣
∣∣∣∣
Q
|Q|

∣∣∣∣ + ϕ′(|P|)
∣∣∣∣
P
|P| −

Q
|Q|

∣∣∣∣

≤ γ0 ϕ
′
|Q|

(∣∣|P| − |Q|
∣∣) + 4ϕ′(|P|) |P−Q|

|P|+ |Q|
≤ (8 + γ0)ϕ′|Q|(|P−Q|)
≤ 2K ′(8 + γ0)ϕ′|P|(|P−Q|),

where we used Lemma 5.11. In the case |P| ≤ |Q| one analogously shows
that ∣∣A(P)−A(Q)

∣∣ ≤ (8 + γ0)ϕ′|P|(|P−Q|).

Note, that (5.33) can be written as:

ϕ′[a](t) ≤ γ0ϕ
′
a(t), for all t, a ≥ 0.

Lemma 6.10. Let ϕ be an N-function which satisfies (6.11). Then ϕ is C1

on [0,∞) and ϕ′ is locally Lipschitz-continuous on (0,∞). Moreover, ϕ and
ϕ∗ satisfy the ∆2-condition. If additionally ϕ is C2 on (0,∞), then

γ1ϕ
′(t) ≤ tϕ′′(t) ≤ γ2ϕ

′(t), (6.12)

holds for all t > 0, i.e., (6.6) is satisfied with γ3 = γ1 and γ4 = γ2. In
particular, ϕ satisfies Assumption 6.1.

Proof. From (6.11) follows for 0 < t ≤ a,

∣∣ϕ′(a+ t)− ϕ′(a)
∣∣ ≤ γ2

ϕ′(a+ t)
a+ t

t ≤ γ2
ϕ′(2a)
a

t,

which shows that ϕ′ is locally Lipschitz-continuous on (0,∞). In particular,
ϕ′ is continuous on (0,∞). Since ϕ is an N-function we also know that
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ϕ′(t) is right-continuous at t = 0 and thus ϕ is C1 on R≥0. Setting λ2 :=
(2γ2 + 1)−1 ∈ (0, 1), then we have for all t ≥ 0

ϕ′((1 + λ2)t)− ϕ′(t) = ϕ′[t](λ2t) ≤ γ2ϕ
′
t(λ2t) =

1
2

γ2

1 + γ2
ϕ′((1 + λ2)t).

This implies

ϕ′((1 + λ2)t) ≤
2(1 + γ2)
2 + γ2

ϕ′(t).

Since λ2 ∈ (0, 1) there exists m ∈ N such that (1 + λ2)m ≥ 2 and we get

ϕ′(2t) ≤ ϕ′((1 + λ2)mt) ≤
(

2(1 + γ2)
2 + γ2

)m
ϕ′(t).

Thus ϕ′ satisfies the ∆2-condition and consequently also ϕ. Analogously, we
obtain for all t ≥ 0,

ϕ′(2t)− ϕ′(t) = ϕ′[t](t) ≥ γ1ϕ
′
t(t) =

γ1

2
ϕ′(2t),

which implies
ϕ′(t) ≤

(
1− γ1

2

)
ϕ′(2t),

because 0 < γ1 ≤ 1. We can chose m ∈ N such that
(
1 − γ1/2

)m ≤ 1/2.
Using (5.3), we thus obtain

ϕ(t) ≤
(
1− γ1

2

)m

2m
ϕ(2mt) ≤ 1

2 · 2m ϕ(2mt), (6.13)

which, due to (5.37), implies that ϕ∗ satisfies the ∆2-condition.
Assume now that ϕ is C2 on (0,∞). For t > 0 we then have

t lim
s→0

ϕ′[t](s)

s
= t lim

s→0

ϕ′(t+ s)− ϕ′(t)
s

= tϕ′′(t),

t lim
s→0

ϕ′t(s)
s

= t lim
s→0

ϕ′(t+ s)
t+ s

= ϕ′(t),

which together with (6.11) implies (6.12). �

Also the reverse implication of Lemma 6.10 is true.
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Lemma 6.11. Let ϕ be an N-function which belongs to C1(R≥0)∩C2(0,∞)
and satisfies the ∆2-condition and (6.12). Then for all a, t ≥ 0,

γ1

4(K ′)2
ϕ′a(t) ≤ ϕ′[a](t) ≤ 2max{γ2,K

′}ϕ′a(t). (6.14)

Proof. The assertion is obvious if either a = 0 or t = 0. For all a, t > 0 we
have

ϕ′[a](t) = ϕ′(a+ t)− ϕ′(a) =
∫ 1

0

ϕ′′(a+ λt)t dλ. (6.15)

If 0 < t ≤ a, we use the second equality in (6.15) and (6.12), the fact that
ϕ′ is non-decreasing and the inequality a ≥ (a+ t)/2 to obtain

ϕ′[a](t) ≤ γ2

∫ 1

0

ϕ′(a+ λt)
a+ λt

t dλ ≤ γ2
ϕ′(a+ t)

a
t ≤ 2γ2ϕ

′
a(t)

and

ϕ′[a](t) ≥ γ1
ϕ′(a)
a+ t

t ≥ γ1

ϕ′
(

1
2 (a+ t)

)

a+ t
t ≥ γ1

K ′
ϕ′(a+ t)
a+ t

t =
γ1

K ′ ϕ
′
a(t).

If 0 < a ≤ t, we use the first equality in (6.15), the inequality a+ t ≤ 2t and
Lemma 5.4 with M = 1 to obtain

ϕ′[a](t) ≤ ϕ′(2t) ≤ K ′ϕ′(t) ≤ 2K ′ϕ′a(t),

and using the second equality in (6.15), (6.12), that ϕ′ is positive, a+λt ≤ 2t,
and Lemma 5.5 with M = 1

ϕ[a](t) ≥ γ1

∫ 1

1
2

ϕ′(a+ λt)
a+ λt

t dλ ≥ γ1

4
ϕ′

(1
2
t
)

≥ γ1

4(K ′)2
ϕ′(2t) ≥ γ1

4(K ′)2
ϕ′a(t).

Thus, the assertion of the lemma is proved. �
In general, an N-function ϕ does not have to be C2(0,∞) even if it satisfies

(5.33). However, we can mollify it. For that let ε ∈ (0, 1/2) and let ηε ∈
C∞(0,∞) be such that ηε ≥ 0,

∫∞
0
ηε dx = 1, and supp(ηε) ⊆⊆ (1−ε, 1+ε).

We define for t ≥ 0

(ωε)′(t) :=
∫ 1+ε

1−ε
ϕ′(st)ηε(s) ds, (6.16)

and set for t ≥ 0

ωε(t) :=
∫ t

0

(ωε)′(s) ds. (6.17)
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Lemma 6.12. Let ϕ be an N-function such that ϕ and ϕ∗ satisfy the
∆2-condition. Let (ωε)′ be defined by (6.16). Then ωε and (ωε)∗ are
N-functions satisfying for all t ≥ 0

1
K ′ ϕ(t) ≤ ωε(t) ≤ K ′ϕ(t), (6.18)

ωε(2t) ≤ Kωε(t), (6.19)

(ωε)′(2t) ≤ K ′(ωε)′(t), (6.20)

(ωε)∗(2t) ≤ K∗(ωε)∗(t), (6.21)
(
(ωε)∗

)′(2t) ≤ K ′
∗
(
(ωε)∗

)′(t). (6.22)

Proof. Using the properties of ϕ′ and (6.16) one immediately sees that
(ωε)′ has the same properties and thus ωε is an N-function. Since ϕ′ satisfies
the ∆2-condition and ϕ′ is non-decreasing we obtain for all t ≥ 0 and all
0 < ε < 1/2

1
K ′ ϕ

′(t) ≤ (ωε)′(t) ≤ K ′ϕ′(t).

This, (6.17) and (5.3) immediately yield (6.18). From (6.16) we get for all
t ≥ 0 and all 0 < ε < 1/2

(ωε)′(2t) =
∫ 1+ε

1−ε
ϕ′(s2t) ηε(s) ds ≤ K ′

∫ 1+ε

1−ε
ϕ′(st) ηε(s) ds = K ′(ωε)′(t),

which proves (6.20). From (6.16), (6.17), and Fubini’s theorem we obtain

ωε(t) =
∫ t

0

∫ 1+ε

1−ε
ϕ′(sτ) ηε(s) ds dτ

=
∫ 1+ε

1−ε

∫ t

0

ϕ′(sτ) dτ ηε(s) ds

=
∫ 1+ε

1−ε

ϕ(st)
s

ηε(s) ds,

from which (6.19) follows. Moreover, using this representation and the equiv-
alent condition for ϕ∗ satisfying the ∆2-condition, we obtain (cf. (5.37))

ωε(t) ≤
∫ 1+ε

1−ε

ϕ
(
s tK∗

2

)

K∗s
ηε(s) ds =

1
K∗

ωε
(
tK∗
2

)
,

which implies (6.21). Since (ϕ∗)′ satisfies the ∆2-condition we have for all
t ≥ 0 using Lemma 5.20

2(ωε)′(t) =
∫ 1+ε

1−ε
2ϕ′(st) ηε(s) ds ≤

∫ 1+ε

1−ε
ϕ′(sK ′

∗t) ηε(s) ds = (ωε)′(K ′
∗t),

which implies (6.22) due to Lemma 5.20. This finishes the proof. �
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Lemma 6.13. Let ϕ satisfy (6.11) and let (ωε)′ be defined by (6.16). Then
(ωε)′ satisfies (6.11) and ωε satisfies Assumption 6.1. In particular, for all
t ≥ 0,

γ1 (ωε)′(t) ≤ t (ωε)′′(t) ≤ γ2 (ωε)′(t). (6.23)

Proof. From (6.11) and (6.16) we deduce

(ωε)′[a](t) =
∫ 1+ε

1−ε
ϕ′[sa](st) ηε(s) ds ≤ γ2

∫ 1+ε

1−ε
ϕ′sa(st) ηε(s) ds = γ2(ωε)′a(t),

which proves the second inequality in (6.23). The first one follows analo-
gously. For t > 0 the expression (6.16) can be written as

(ωε)′(t) =
1
t

∫ t(1+ε)

t(1−ε)
ϕ′(τ) ηε

(τ
t

)
dτ,

which yields ωε ∈ C2(0,∞). Thus in view of Lemma 6.10 we obtain that ωε

satisfies Assumption 6.1. �

Now we are ready to prove the assertions of Lemma 6.7 under weaker
assumptions on ϕ.

Lemma 6.14. Let the operator A have an N-potential ϕ and let ϕ satisfy
for all t ≥ 0,

γ5ϕ
′
a(t) ≤ ϕ′[a](t) ≤ γ6ϕ

′
a(t).

Then A has the ϕ-structure. In particular, A satisfies(6.2) and (6.3) with
γ1 = 2γ5/(K3K ′) and γ2 = 2c2(2 + γ6)(n + N)(K4

∗/4)1/κKM+2K ′, where
κ ∈

(
2−1(logK∗(3K∗/4) + 1), 1

)
and M ∈ N is such that K2

∗ ≤ 2M+1.

Proof. Let us denote by Aε the operator with the N-potential ωε, i.e.,
Aε(0) = 0 and

Aε(P) :=
(ωε)′(|P|)

|P| P

for all P ∈ RN×n. From Lemma 6.13 it follows that ωε satisfies Assump-
tion 6.1 with γ3 = γ5 and γ4 = γ6. Lemma 6.7 thus yields that the operator
Aε has the ωε-structure, i.e.,

(Aε(P)−Aε(Q)) · (P−Q) ≥ c4(ωε)′|P|(|P−Q|)|P−Q|, (6.24)
∣∣Aε(P)−Aε(Q)

∣∣ ≤ c5(ωε)′|P|(|P−Q|) (6.25)
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holds for all P,Q ∈ RN×n, where c4 := 2γ5/(K3K ′) and c5 := 2c2(2+γ6)(n+
N)(K4

∗/4)1/κKM+2K ′ with κ and M as above. According to Lemma 6.10
ϕ′ is continuous and so we easily deduce from the definition of (ωε)′ that for
all t ≥ 0,

lim
ε→0

(ωε)′(t) = ϕ′(t).

Thus also Aε(P) and (ωε)′|P| converge to A(P) and ϕ′|P|, respectively, as
ε→ 0. The assertions of the lemma now follow immediately from (6.24) and
(6.25) letting ε→ 0. �

Now, we want to derive another very useful property of an operator A
with an N-potential ϕ. For that let ϕ be a given N-function. We set for
t ≥ 0

ψ′(t) :=
√
ϕ′(t)t (6.26)

and define the associated N-function ψ for t ≥ 0 by

ψ(t) :=
∫ t

0

ψ′(s) ds. (6.27)

Lemma 6.15. Let ϕ be an N-function satisfying (6.11). Then ψ defined in
(6.27) is an N-function which satisfies for all t ≥ 0

γ1

2
ψ′a(t) ≤ ψ′[a](t) ≤ (γ2 + 1)ψ′a(t). (6.28)

Moreover, ψ is C1 on [0,∞), ψ′ is locally Lipschitz-continuous on (0,∞),
and ψ and ψ∗ satisfy the ∆2-condition. In particular, we have for all t ≥ 0

ψ′(2t) ≤
√

2K ′ ψ(t), (6.29)

ψ(2t) ≤ 2
√

2K ′ ψ(t), (6.30)

(ψ∗)′(2t) ≤ max{2,K ′
∗}(ψ∗)′(t), (6.31)

ψ∗(2t) ≤ 2max{2,K ′
∗}ψ∗(t). (6.32)

Proof. Using the properties of ϕ′ and (6.26) one immediately sees that ψ′

has the same properties and thus ψ is an N-function. From (6.26) and the
definition of the shifted N-function it follows that for all a, t ≥ 0,

ψ′a(t) =
√
ϕ′(a+ t)(a+ t)

t

a+ t
=

√
ϕ′a(t)t.
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Furthermore, we have for all a, t ≥ 0

ψ′[a](t) =
ϕ′(a+ t)(a+ t)− ϕ′(a)a√
ϕ′(a+ t)(a+ t) +

√
ϕ′(a)a

=

(
ϕ′(a+ t)− ϕ′(a)

)
(a+ t) + ϕ′(a)t√

ϕ′(a+ t)(a+ t) +
√
ϕ′(a)a

=: I1 + I2.

(6.33)

For I1 we obtain

I1 ≤
ϕ′[a](t)(a+ t)

√
ϕ′(a+ t)(a+ t)

≤ γ2
ϕ′a(t)(a+ t)√
ϕ′(a+ t)(a+ t)

= γ2 ψ
′
a(t),

and

I1 ≥
ϕ′[a](t)(a+ t)

2
√
ϕ′(a+ t)(a+ t)

≥ γ1

2
ϕ′a(t)(a+ t)√
ϕ′(a+ t)(a+ t)

=
γ1

2
ψ′a(t).

For I2 we get

0 ≤ I2 ≤
ϕ′(a+ t)t√

ϕ′(a+ t)(a+ t)
= ψ′a(t).

These inequalities and (6.33) prove (6.28). The assertions concerning the
smoothness of ψ and the ∆2-conditions for ψ and ψ∗ follow from Lemma 6.10.
We deduce from (5.11) and (6.26) that for all t ≥ 0,

ψ′(2t) =
√
ϕ′(2t)2t ≤

√
2K ′

√
ϕ′(t)t =

√
2K ′ψ(t),

which proves (6.29). This and Lemma 5.2 imply (6.30). In order to show
(6.31) we use Lemma 5.20. For t ≥ 0 we have

2ψ′(t) =
√

4tϕ′(t) ≤
√

2tϕ(K ′∗t)

≤
√

max{2,K ′∗} tϕ(max{2,K ′∗}t) = ψ′(max{2,K ′
∗}t).

This and Lemma 5.10 imply (6.32). �
For a given N-function ϕ we denote by F the operator with the N-potential

ψ, where ψ is the associated N-function defined in (6.27), i.e., F(0) = 0 and
for all P ∈ RN×n \ {0},

F(P) := Aψ(P) =
ψ′(|P|)
|P| P. (6.34)

Using this operator we can show that (A(P) − A(Q)) · (P − Q) and
|F(P)− F(Q)|2 are equivalent. More precisely we have:
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Lemma 6.16. Let the operator A have an N-potential ϕ and ϕ-structure.
Let F be defined by (6.34) with ψ from (6.27). Then F = Aψ has ψ-structure.
Moreover,

γ1ϕ|P|(|P−Q|) ≤ (A(P)−A(Q)) · (P−Q) ≤ γ24K ′ϕ|P|(|P−Q|), (6.35)

c5|F(P)− F(Q)|2 ≤ (A(P)−A(Q)) · (P−Q) ≤ c6|F(P)− F(Q)|2 (6.36)

holds for all P,Q ∈ RN×n, where c5 and c6 are constants depending only on
γ1, γ2, K, K ′, K∗, n and N . In particular, we have

γ1ϕ(|P|) ≤ A(P) ·P ≤ γ24K ′ϕ(|P|), (6.37)

c5|F(P)|2 ≤ A(P) ·P ≤ c6|F(P)|2. (6.38)

Proof. In view of Lemma 6.8 and Lemma 6.10 the N-functions ϕ and ϕ∗

satisfy the ∆2-condition. The assertion (6.35) follows from (6.5), (5.16) and
(5.22). Lemma 6.8 also implies that ϕ satisfies (6.11) and so Lemma 6.15
yields

γ1

2
ψ′a(t) ≤ ψ′[a](t) ≤ (γ2 + 1)ψ′a(t)

for all a, t ≥ 0. Thus Lemma 6.14 proves that F has the ψ-structure, i.e.,

(F(P)− F(Q)) · (P−Q) ≥ c7ψ
′
|P|(|P−Q|)|P−Q|, (6.39)

|F(P)− F(Q)| ≤ c8ψ
′
|P|(|P−Q|) (6.40)

holds for all P,Q ∈ RN×n, with constants c7 and c8 depending only on γ1,
γ2, K, K ′, K∗, n and N (cf. Lemma 6.14, Lemma 6.15). Moreover, we have
(cf. (6.4))

c7ψ
′
|P|(|P−Q|) ≤ |F(P)− F(Q)| ≤ c8ψ

′
|P|(|P−Q|), (6.41)

which yields

c27ϕ|P|(|P−Q|) ≤ c27ϕ
′
|P|(|P−Q|)|P−Q|

=
(
c7ψ

′
|P|(|P−Q|)

)2

≤ |F(P)− F(Q)|2

and ∣∣F(P)− F(Q)
∣∣2 ≤

(
c8ψ

′
|P|(|P−Q|)

)2

= c28ϕ
′
|P|(|P−Q|)|P−Q|

≤ c284K
′ϕ|P|(|P−Q|).

These two inequalities together with (6.35) immediately imply (6.36). The
inequalities (6.37) and (6.38) follow from (6.35), (6.36), and ϕ0(t) = ϕ(t). �
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Remark 6.17. In view of Lemma 6.14 one can replace in Lemma 6.16 the
assumption that A has ϕ-structure by the assumption that ϕ satisfies (6.11).

In concrete examples it might be complicated to verify condition (6.11)
if ϕ is only an N-function. If ϕ possesses a second derivative, then the
situation becomes easier, since it is sufficient to verify (6.6) (cf. Lemma 6.10,
Lemma 6.11).

Concerning applications, also the following situation is of interest, for
which we derive the same assertions as in Lemma 6.16. Let A have an
N-potential ϕ, i.e. (6.1) holds, where the N-function ϕ belongs to C1(R≥0)∩
C2(0,∞).2 Furthermore we assume that there exists another N-function ζ,
which satisfies Assumption 6.1, and constants γ7, γ8 > 0 such that for all
t > 0,

γ7ζ
′′(t) ≤ ϕ′′(t) ≤ γ8ζ

′′(t). (6.42)

Since both ζ and ϕ are N-functions, this implies

γ7ζ
′(t) ≤ ϕ′(t) ≤ γ8ζ

′(t), (6.43)

γ7ζ(t) ≤ ϕ(t) ≤ γ8ζ(t). (6.44)

Moreover, ϕ also satisfies (6.6), i.e. for all t > 0,

γ7γ3

γ8
ϕ′(t) ≤ tϕ′′(t) ≤ γ4γ8

γ7
ϕ′(t),

where γ3, γ4 are the constants from (6.6) with ϕ replaced by ζ. Lemma 6.7
now implies that A has the ϕ-structure and due to (6.43) also the ζ-struc-
ture. In particular, for all P,Q ∈ RN×n,

(A(P)−A(Q)) · (P−Q) ≥ c9ϕ
′
|P|(|P−Q|)|P−Q|,

(A(P)−A(Q)) · (P−Q) ≥ c9γ7ζ
′
|P|(|P−Q|)|P−Q|,

|A(P)−A(Q)| ≤ c10ϕ
′
|P|(|P−Q|),

|A(P)−A(Q)| ≤ c10γ8ζ
′
|P|(|P−Q|),

with constants c9 and c10 depending only on γ3, γ4, γ7, γ8, n, N and on the
∆2-constants of ζ, ζ ′, ζ∗, which are denoted by K̂, K̂ ′, K̂∗. We also used

2The assumptions on ϕ can easily be weakened.
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that

ϕ′(2t) ≤ γ8

γ7
K̂ ′ϕ′(t),

ϕ(2t) ≤ γ8

γ7
K̂ϕ(t),

ϕ∗(2t) ≤ γ8

γ7
K̂∗ϕ(t),

which follow from (6.43), (6.44), and (5.37). From the proof of Lemma 6.7
we obtain that

∑

l,m,j,k

Bjk
Ajk(P)
∂Plm

Blm ≥ γ3γ7

γ8

ϕ′(|P|)
|P| |B|2 ≥ γ7

γ3γ7

γ8

ζ ′(|P|)
|P| |B|2,

∣∣∣Ajk(P)
∂Plm

∣∣∣ ≤
(
2 +

γ4γ8

γ7

)ϕ′(|P|)
|P| ≤ γ8

(
2 +

γ4γ8

γ7

)ζ ′(|P|)
|P|

holds for all P,B ∈ RN×n with P 6= 0. Moreover, from Lemma 6.16 it
follows that

c9γ7ζ|P|(|P−Q|) ≤ (A(P)−A(Q)) · (P−Q) ≤ c10γ84K̂ ′ζ|P|(|P−Q|),

c11|F(P)− F(Q)|2 ≤ (A(P)−A(Q)) · (P−Q)

≤ c12|F(P)− F(Q)|2
(6.45)

holds for all P,Q ∈ RN×n, with constants c11 and c12 depending only on γ3,
γ4, γ7, γ8, n, N and K̂, K̂ ′, K̂∗. Here F = Aψ denotes the operator with
the N-potential ψ, where ψ is the associated N-function for ϕ (cf. (6.27)).
Let us denote by ψ̂ the associated N-function for ζ, i.e. for all t ≥ 0,

ψ̂′(t) :=
√
ζ ′(t)t,

and by F̂ the operator with the N-potential ψ̂. Since

√
γ7 ψ̂

′(t) ≤ ψ′(t) ≤ √γ8 ψ̂
′(t)

we obtain, using (6.41) once for F and ψ and once for F̂ and ψ̂, that

c7c8
√
γ7 |F̂(P)− F̂(Q)| ≤ |F(P)− F(Q)| ≤ c7c8

√
γ8 |F̂(P)− F̂(Q)|.
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From this and (6.45) we obtain

c13|F̂(P)− F̂(Q)|2 ≤ (A(P)−A(Q)) · (P−Q) ≤ c14|F̂(P)− F̂(Q)|2,

with constants c13 and c14 depending only on γ3, γ4, γ7, γ8, n, N and K̂,
K̂ ′, K̂∗. In particular, we have

c9γ7ζ(|P|) ≤ A(P) ·P ≤ c10γ84K̂ ′ζ(|P|),
c13|F(P)|2 ≤ A(P) ·P ≤ c14|F(P)|2. (6.46)

Remark 6.18. A typical example for the above situation is the following:
Let the operator A have an N-potential ϕ, where the N-function ϕ belongs
to C1(R≥0) ∩ C2(0,∞). Assume that there exists p ∈ (1,∞), κ ∈ [0,∞),
and constants γ9, γ10 > 0 such that for all t > 0,

γ9(κ+ t)p−2 ≤ ϕ′′(t) ≤ γ10(κ+ t)p−2. (6.47)

Then all assertions from (6.42) to (6.46) hold with

ζ ′(t) :=
1

p− 1
(
(κ+ t)p−1 − κp−1

)
.

Note that there exist constants c15, c16 depending only on p, such that for
all κ, t ≥ 0,

c15ζ
′(t) ≤ (κ+ t)p−2t ≤ c16ζ

′(t).

If (6.47) holds, one says that ϕ has a p-structure.

7. Problems with a ϕ-structure

In this section we want to generalize the results of the previous section
to operators A with a ϕ-structure, cf. (6.2) and (6.3), but possessing no
potential. We first investigate the situation when ϕ satisfies Assumption 6.1.

Lemma 7.1. Let ϕ satisfy Assumption 6.1. Then ψ defined in (6.27) sat-
isfies Assumption 6.1. In particular, (6.29)–(6.32) are satisfied and

γ3ψ
′(t) ≤ tψ′′(t) ≤ γ4 + 1

2
ψ′(t) (7.1)

holds for all t > 0.
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Proof. From Assumption 6.1 and the definition of ψ it follows that ψ has
the same regularity properties as ϕ. In the proof of (6.29)–(6.32) we used
only the definition of ψ and the fact that ϕ and ϕ∗ satisfy the ∆2-condition.
Thus it follows also in our situation that ψ and ψ∗ satisfy the ∆2-condition.
The definition of ψ′, (6.6) and 0 < γ3 ≤ 1 yield

ψ′′(t) =
1
2
tϕ′′(t) + ϕ′(t)√

tϕ′(t)
≤ γ4 + 1

2
ϕ′(t)√
tϕ′(t)

=
γ4 + 1

2
ψ′(t)
t

and
ψ′(t)
t

=
ϕ′(t)√
tϕ′(t)

≤ 1
2
γ−1
3 tϕ′′(t) + ϕ′(t)√

tϕ′(t)
≤ 1
γ3
ψ′′(t),

for t > 0. This proves (7.1). �
Lemma 7.2. Let the operator A have ϕ-structure and let ϕ satisfy Assump-
tion 6.1. Let F be defined by (6.34) with ψ from (6.27). Then F = Aψ has
ψ-structure. Moreover,

γ1ϕ|P|(|P−Q|) ≤ (A(P)−A(Q)) · (P−Q) ≤ γ24K ′ϕ|P|(|P−Q|), (7.2)

c17|F(P)− F(Q)|2 ≤ (A(P)−A(Q)) · (P−Q) ≤ c18|F(P)− F(Q)|2

holds for all P,Q ∈ RN×n, where c17 and c18 are constants depending only
on γ1, γ2, K, K ′, K∗, n and N . In particular, we have

γ1ϕ(|P|) ≤ A(P) · (P) ≤ γ24K ′ϕ(|P|),
c17|F(P)|2 ≤ A(P) · (P) ≤ c18|F(P)|2.

Proof. The assertion (7.2) follows from (6.5), (5.16) and (5.22). Lemma 7.1
yields that ψ satisfies Assumption 6.1 and so Lemma 6.7 implies that F has
the ψ-structure. In particular, (6.39) and (6.40) are satisfied and we can
finish the proof of this lemma exactly as in the proof of Lemma 6.16. �

In order to relax the assumption on ϕ we introduce another associated
N-function ψ̄. For a given N-function ϕ we set for t ≥ 0

ψ̄′(t) :=
√
ϕ(t), (7.3)

and define the associated N-function ψ̄ for t ≥ 0 by

ψ̄(t) :=
∫ t

0

ψ̄′(s) ds. (7.4)

From the properties of the N-function ϕ it follows that ψ̄′(t) is continuous
and always possesses a right continuous right derivative which we denote by
ψ̄′′(t).
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Lemma 7.3. Let ϕ be an N-function satisfying the ∆2-condition. Then ψ̄
defined in (7.4) is an N-function, which satisfies for all t ≥ 0,

1
2
ψ̄′(t) ≤ tψ̄′′(t) ≤ K

2
ψ̄′(t), (7.5)

1
8K

ψ̄′a(t) ≤ ψ̄′[a](t) ≤ 2max
{
K

2
,
√
K

}
ψ̄′a(t). (7.6)

Moreover, ψ̄ is C1 on [0,∞), ψ̄′ is locally Lipschitz-continuous on (0,∞)
and ψ̄ and ψ̄∗ satisfy the ∆2-condition. In particular, we have for all t ≥ 0,

ψ̄′(2t) ≤
√
K ψ̄′(t), (7.7)

ψ̄(2t) ≤ 2
√
K ψ̄(t), (7.8)

ψ̄∗(2t) ≤ 2m+1ψ̄∗(t), (7.9)

where m ∈ N is such that
(
1− 1/(16K)

)m ≤ 1
2 . Finally, let ψ be defined in

(6.27). Then we have for all t ≥ 0,

ψ̄′(t) ≤ ψ′(t) ≤
√
K ψ̄′(t). (7.10)

Proof. The properties of the N-function ϕ, (7.3) and (7.4) imply that ψ̄ is
an N-function. Using the ∆2-condition for ϕ and (7.3), we obtain (7.7). The
inequality (7.8) then follows from Lemma 5.2. Inequalities in (7.5) follow
from (5.16) and (7.3). The proof of inequality (6.14) in Lemma 6.11 works
also under the assumptions on ψ̄ here. Thus (7.6) is a consequence of (7.7)
and (6.14). The regularity properties of ψ̄ and the fact that ψ̄∗ satisfies the
∆2-condition follow from (7.6) and Lemma 6.10. Inequality (7.9) follows
from (6.13) and (5.37). Inequality (7.10) follows from the definitions of ψ̄
and ψ. �

For a given N-function ϕ we denote by F̄ the operator with the N-potential
ψ̄, where ψ̄ is defined in (7.4),

F̄(P) := Aψ̄(P) =
ψ̄′(|P|)
|P| P (7.11)

holds, i.e., F̄(0) = 0 and for all P ∈ RN×n \ {0}.
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Lemma 7.4. Let the operator A have a ϕ-structure, where ϕ is an N-funct-
ion satisfying the ∆2-condition. Let F̄ be defined by (7.11) with ψ̄ from (7.4).
Then F̄ = Aψ̄ has the ψ̄-structure. Moreover,

γ1ϕ|P|(|P−Q|) ≤ (A(P)−A(Q)) · (P−Q)

≤ γ24K ′ϕ|P|(|P−Q|),
(7.12)

c19|F̄(P)− F̄(Q)|2 ≤ (A(P)−A(Q)) · (P−Q)

≤ c20|F̄(P)− F̄(Q)|2
(7.13)

holds for all P,Q ∈ RN×n, where c19 and c20 are constants depending only
on γ1, γ2, K, K ′, K∗, n and N . In particular, we have

γ1ϕ(|P|) ≤ A(P) ·P ≤ γ24K ′ϕ(|P|), (7.14)

c19|F̄(P)|2 ≤ A(P) ·P ≤ c20|F̄(P)|2. (7.15)

Proof. Since the operator A has ϕ-structure, we obtain (cf. (6.5))

γ1ϕ
′
|P|(|P−Q|)|P−Q| ≤ (A(P)−A(Q)) · (P−Q)

≤ γ2ϕ
′
|P|(|P−Q|)|P−Q|. (7.16)

From the definition of ψ (cf. (6.27)) we get

ϕ′|P|(|P−Q|)|P−Q| =
(
ψ′|P|(|P−Q|)

)2
.

This and inequalities (7.10) yield
(
ψ̄′|P|(|P−Q|)

)2 ≤ ϕ′|P|(|P−Q|)|P−Q| ≤ K
(
ψ̄′|P|(|P−Q|)

)2
. (7.17)

Due to (7.6) Lemma 6.14 implies that F̄ has the ψ̄-structure, i.e.,

(F̄(P)− F̄(Q)) · (P−Q) ≥ c21ψ̄
′
|P|(|P−Q|)|P−Q|,

|F̄(P)− F̄(Q)| ≤ c22ψ̄
′
|P|(|P−Q|)

holds for all P,Q ∈ RN×n, with constants c21 and c22 depending only on
K, K ′, K∗, n and N (cf. Lemma 6.14, Lemma 7.3). Moreover, we have
(cf. (6.4))

c19ψ̄
′
|P|(|P−Q|) ≤ |F̄(P)− F̄(Q)| ≤ c20ψ̄

′
|P|(|P−Q|). (7.18)

Inequalities (7.13) now follow from (7.16), (7.17) and (7.18). The inequalities
(7.14) and (7.15) follow immediately from (7.12), (7.13) and ϕ0(t) = ϕ(t).

�
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8. Applications to fluid dynamics

In this section we want to show how the results of the previous sections can
be modified to fit to the setting of fluid dynamics. We study a similar system
as in Section 7. However, due to the principle of objectivity the extra stress
tensor S depends on the velocity gradient ∇v only through its symmetric
part Dv := 1

2

(
∇v + (∇v)⊤

)
, i.e. S(∇v) = S(Dv). For instance, in the case

of viscous, incompressible fluids we study the system

−div
(
S(Dv)

)
+∇π = f in Ω,
div v = 0 in Ω,

v = 0 on ∂Ω,

where Ω ⊂ Rn, v : Ω → Rn. Let Rn×nsym denote the set of symmetric (n× n)-
tensors. The extra stress S : Rn×n → Rn×nsym is defined for all P ∈ Rn×n
by

S(P) = Sϕ(P) :=
ϕ′(|Psym|)
|Psym| Psym, (8.1)

where ϕ is an N-function and

Psym := 1
2

(
P + P⊤)

.

In analogy with Section 6, we say that Sϕ possesses an N-potential ϕ. By
definition of S we have S(P) = S(Psym) for all P ∈ Rn×n. Then for all
D ∈ Rn×nsym we have Sϕ(D) = Aϕ(D) with Aϕ defined by (6.1). Therefore,
most of the results for A are extended to S. It is the purpose of this section
to present the necessary changes.

We also consider the more general situation when S has no N-potential.
We say that the operator S has a ϕ-structure, where ϕ is an N-function, if
S(0) = 0 and there exist constants γ1, γ2 > 0 such that for all P,Q ∈ Rd×d,

(S(P)− S(Q)) · (P−Q) ≥ γ1 ϕ
′
|Psym|(|Psym −Qsym|)|Psym −Qsym|, (8.2)

|S(Psym)− S(Qsym)| ≤ γ2 ϕ
′
|Psym|(|Psym −Qsym|). (8.3)

With this new notation all the results from Section 6 and 7 for the operator
A and related quantities carry over to the operator S and the corresponding
quantities. As an example we formulate Lemma 6.16 for S. Certainly, the
definition of F has to be adapted accordingly; we set

F(P) := Sψ(P) =
ψ′(|Psym|)
|Psym| Psym. (8.4)

Then Lemma 6.16 reads as follows.
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Lemma 8.1. Let the operator S have an N-potential ϕ, i.e. (8.1) holds, and
the ϕ-structure, i.e. (8.2) and (8.3) are satisfied. Let F be defined by (8.4)
with ψ′(t) =

√
ϕ′(t)t. Then F = Sψ has the ψ-structure. Moreover,

γ1 ϕ|Psym|(|Psym −Qsym|) ≤ (S(P)− S(Q)) · (P−Q),

γ1 ϕ|Psym|(|Psym −Qsym|) ≤ γ2 4K ′ϕ|Psym|(|Psym −Qsym|),
c5|F(P)− F(Q)|2 ≤ (S(P)− S(Q)) · (P−Q),

c5|F(P)− F(Q)|2 ≤ c6|F(P)− F(Q)|2

holds for all P,Q ∈ Rd×d, where c5 and c6 are constants depending only on
γ1, γ2, K, K ′, K∗ and n. In particular, we have

γ1 ϕ(|P|) ≤ S(P) ·P ≤ γ2 4K ′ϕ(|P|),
c5|F(P)|2 ≤ S(P) ·P ≤ c6|F(P)|2.

Thus, the results of Section 6 and 7 carry over, if we define F and F̄
accordingly and replace P and Q in all the estimates involving ϕ, ψ, ψ̄ and
ωε by Psym and Qsym, respectively.

Only the proof of Lemma 6.7 needs a little more attention. There (6.8)
has to be replaced by

Sjk(P)
∂Plm

=
ϕ′(|Psym|)
|Psym|

(
δsym
jk,lm −

P sym
jk P sym

lm

|Psym|2
)

+ ϕ′′(|Psym|)
P sym
jk

|Psym|
P sym
lm

|Psym| ,

where
δsym
ij,kl :=

1
2
(δikδjl + δilδjk).

The rest of the proof remains the same.
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[49] M. Růžička: A note on steady flow of fluids with shear dependent viscosity. Pro-
ceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996).
Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3029–3039. Zbl 0906.35076,

MR 99g:76005.
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