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Abstract. We present a progress report on our ongoing project of reverse
engineering scientific PDF documents. The aim is to obtain mathematical
markup that can be used as source for regenerating a document that
resembles the original as closely as possible. This source can then be a
basis for further document processing. Our current tool uses specialised
PDF extraction together with image analysis to produce near perfect
input for parsing mathematical formula. Applying a linear grammar and
specific drivers for each output format to this input, we can produce an
accurate reproduction of formulae when presented with their coordinates.
In this paper we will show how this information can be exploited to
discover the locations of both inline and display formulae, and also to
perform rudimentary layout analysis of the whole document, identifying
structures such as headings and paragraphs.

1 Introduction

Converting PDF files into alternative formats can offer users the ability to
do more than just view or print a document. Indeed, there exist a number
of software tools that enable their conversion into formats such as ASCII or
Word, along with the copy-to-clipboard function available with the majority of
PDF viewers. However, all the currently existing tools focus on the extraction
of regular text from documents and none are capable of faithfully extracting
and translating non-textual components, such as the document’s format and
styling, mathematical formulae or tables. We are working on a system that
allows faithful reverse engineering of entire PDF documents, with a particular
emphasis on converting mathematical content into markup languages like LATEX
or MathML.

In previous work we have focused on the reconstruction of mathematical
formulae in PDF documents and their parsing into LATEX and MathML using
formal grammars. While this yielded good results and enabled reproduction of
formulae very close to the original, the main drawback of the technique was
that formulae had to be manually identified and clipped from PDF documents.

In this paper we report on a significant extension to our previous work by
automatically identifying formulae through the analysis of symbols, fonts and
their spatial relationships within each page. Furthermore, we show how this
allows us to extract both text and mathematical content and we demonstrate
how this information can be used to perform layout analysis of a page. This
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paper is a progress report on the current state of the overall project. An
evaluation of the effectiveness of our approach is presented in [3], which
compares our results to those of the Infty mathematical document analysis
system [9].

In Sec. 2 we review the key points of our previous approaches to formula
recognition from PDF documents as described in [2]. Sec. 3 then explains how
this process is extended to perform whole page analysis, including layout
analysis and recognition of inline mathematics. We discuss advantages and
disadvantages of our approach as well as future improvements in Sec. 4 and
conclude in Sec. 5.

2 Previous Work
In [2] we demonstrated an approach to formula recognition from PDF
documents, which bypassed the standard but troublesome OCR stage by
replacing it with PDF analysis to produce high quality results. Here we
summarise this approach.

The PDF specification is very large and complex, covering 9 different
versions. Some PDF files even store their contents in a raster image format and
contain no more usable information than the images themselves. We therefore
focus on a subset of PDF, which encode symbol information in an analysable
form and covers a large amount of published scientific and mathematical
material.

The files that we can parse use either Type 1 or Type 2 fonts, with their
respective font encoding and width objects contained in the PDF file. We also
require a valid PDF file, as many have corrupt reference tables, missing or
erroneous objects. This generally limits our software to files generated from
LATEX, but not exclusively, as we have also had success working with those
generated from Troff, OpenOffice.

We begin by rendering a PDF file to a TIFF image, from which a user is
able to select specific areas of mathematics, an example of which is shown in
Fig. 1. For each of these clips, the co-ordinates and dimensions are calculated,
along with those of every connected component contained in that area. The
information is then saved together with other meta data about the image, such
as the name and page number of the file it was selected from. This meta data is
then used by a PDF extractor in order to find the correct page within the file to
process.

The extractor makes two passes over the file, the first of which is to
collate the required content streams, which hold instructions for placing and
displaying characters, lines and images, along with a number of other resources,
including font dictionaries and character names. The second pass of the file
sequentially processes each of these instructions to identify and extract each
symbol, its respective font name, size and base point along with all lines and
their coordinates.

The information produced by this process, whilst sufficient for the analysis
of one dimensional text, is not accurate enough for the recognition of the two
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dimensional relationships that occur with mathematical formulae. Therefore
the connected components obtained during image analysis are registered to the
characters and lines, resulting in precise spatial information.

The next stage is to parse this input, with the ultimate aim of producing a
version of the formula in an output such as LATEX. This is achieved by using a
parser based on a linear grammar, a heavily modified version of that described
by Anderson [1], in which spatial relationships between symbols in a given
formula were analysed. His grammar, whilst very efficient, was quite restrictive
and lacked the flexibility to cope with the different styles of typesetting that
are common today. Therefore we removed many of the spatial relationship
restrictions and extended the grammar to include accents, under bars, over
bars, braces and multiline formulae and also to analyse symbol fonts, sizes and
alignment.

This analysis produces a string representing the formula, an example of
which is shown in Listing 1.1, the linearised version of Fig. 1.

Parse trees are then generated from the linearised string and used as
intermediate representations for subsequent translation into mathematical
markup. Different types of parse trees are generated, from simple parse trees
that hold only the basic information on the relationships between symbols in a
formula, to more complex parse trees that incorporated information on font,
character sizes, and relative spacing between symbols.

Finally, output specific drivers are used to translate these parse trees into
mathematical markup. Two main drivers have been created: One producing
LATEX code that faithfully reproduces the original formula taking spatial
information into account and sometimes inserting this information explicitly
into the produced code. A second is aimed at generating LATEX that closely
resembles code that could have been written by a human mathematician. Whilst
the latter does not necessarily reproduce exactly the same formula as in the
original document, it has the advantage that its LATEX lends itself more to a
semantic evaluation as well as cleaning up potential layout mistakes introduced
by the author. The idea to use more than one driver to implement these goals is
primarily to have a clear separation that enables an easy parameterisation of
our software tool depending on the target application.

The resultant LATEX code produced for Fig. 1 is shown in Listing 1.2. Observe
that the translation is a straightforward translation into standard LATEX without
assuming any third party packages in the LATEX environment (e.g., we use array
environments as opposed to anything more sophisticated, such as, for example,
those provided by some of the amsmath packages). Note also that the cmbxa
prefix command is used to set its argument into a specialised font defined in the
preamble of the resulting LATEX file. While this treatment has the drawback that
the produced LATEX is less intuitive, it has the advantage that we can reproduce
any specialist font that is actually used in the document. As a consequence, we
can deal not only with documents that have been produced within a standard
LATEX environment, but also with those that have been produced by other
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tools or where standard fonts have been replaced — a common practice among
publishers.

In order to regain more intuitive LATEX that is closer to what a user would
actually write, one could introduce font mappings to specialist commands,
as well as use specialist environments for matrices or multiline formulae, etc.
However, this will require a more elaborate level of analysis, which is currently
not implemented, but might be added in the future.

Fig. 1. Clipped image of a formula

matrix ( < paren le f tb igg , CMEX10, 9 .963 >) ( row ( c o l ( <A, CMMI10,
9 .963 >) c o l ( <v , CMMI10, 9 .963 >) ) row ( c o l ( < zero , CMR10, 9 .963 >)
c o l ( <one , CMR10, 9 .963 >) ) ) ( < parenrightbigg , CMEX10, 9 .963 >)
w3 <comma, CMMI10, 9.963 > w4 sup <A A, CMMI10, 9 .963 >) ( <
dagger , CMSY7, 6 .974 >) w3 <equal , CMR10, 9.963 > w2 < I comma,
CMMI10, 9.963 > w4 <v , CMMI10, 9.963 > w2 <element , CMSY10,

9.963 > w2 sup( <R , CMBX10, 9 .963 >) ( < three , CMR7, 6 .974 >) w1 <
question , CMR10, 9.963 >

Listing 1.1. Linearised version of clip

\[\ l e f t (\ begin { array } { cc } A & v \\ 0 & 1 \end { array }\ r i g h t )
, \quad AA ^{ \dagger } = I , \quad v \in \

cmbxa {R} ^{ 3 } ? \]

Listing 1.2. Output LATEX code

Further drivers consist of a module producing Presentation MathML, as
well as one that generates input for Festival, a speech synthesis tool. Most
of the drivers focus upon the reconstruction of mathematics for presentation.
However, we have also made some initial steps towards supporting a semantic
interpretation of the parsed mathematical content [4], by constructing tools for
semantic ground truthing of mathematical documents.

3 Layout Analysis

The main change over our previous work is that we now analyse and translate
entire documents automatically rather than just single, manually clipped
formulae. As a consequence we need to analyse the layout of each page of
the document in order to reproduce it as faithfully as possible. This requires
both changes to the extraction process and new drivers to perform the layout
analysis. The former is realised by adding a pre-processing step in the extraction
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process that identifies single lines on a page. The latter consists of two steps:
separating mathematics and regular text in single lines and attempting to
reassemble specific print areas from consecutive lines. This information can
then be exploited during the translation of extracted content into a final output
format.

3.1 Linewise Extraction of PDF Content

In order to extract character information for the whole document, the input
PDF file is initially burst into single page PDFs, which are all rendered to
TIFF images. For the purpose of connected component to symbol registration,
each image and its respective PDF file are then treated as standard clips. From
this we attempt the first stage of layout analysis, where we try to identify any
columns and lines comprising the page. Projection profile cutting is used for
this task though horizontal cuts, i.e. those between lines, are only made if the
white space between symbols exceeds a certain threshold. This is found by
ordering the connected components by their top y coordinate and calculating
the median white space between each pair of sequential components, when the
value is greater than zero.

The result of this process is a number of files, each representing a line,
containing a list of symbols and their attributes. Each line is then linearised to
produce its string representation as discussed in Sec. 2. In addition, we pass the
bounding box information for each line, which can be used in the subsequent
analysis steps.

Consider the example given in Fig. 2, a page from a freely available book
on function theory [7], where the left hand side is an image of the original
PDF page (observe that for the example it is not necessary to explicitly read
individual characters). This page will be broken down into 26 lines and for
each of the identified lines a representation will be computed. For instance the
representation for the second line would be of the form

894 1057 248 58 <P r o o f period , CMBX10 , 9.963>
where the first four integers represent the bounding box information in the
form of the x,y coordinate of the line on the page plus height and width of the
line. Given this line-by-line information, the main layout analysis proceeds in
two steps. First, lines are separated into text lines and display style mathematics,
which are then grouped together into paragraphs and further classified.

One interpretation error can be observed in the fourth line of the multi-line
math expression in Fig. 2. Here the author has forgotten a closing parenthesis
in the superscript expression of the last B. In our current implementation
fences are explicitly opened with LATEX left and closed with right commands.
While our implementation keeps track of matching fences and if necessary
adds dummy left or right commands if there is a mismatch, this is done
for the entire formula and not for subgroups inside the formula (e.g., like a
superscript). As a consequence the opening parenthesis in the superscript is
closed only after the entire expression, which leads to the misinterpretation
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that can be observed in Fig. 2. Having analysed this error, we plan to modify
our fence balancing algorithm to respect formula subgroups.

3.2 Analysis of Lines

All linearised lines of a page are then parsed using a LALR parser, resulting in
a collection of parse trees. These parse trees are an intermediate representation,
one for each line, containing structural information that can be exploited for
the next steps in the layout analysis as well as in subsequent translation into
output formats.

Each line is analysed separately and classified by whether it is primarily
a text line or a math line. The single elements in a line are translated by
linearly assembling consecutive words, identifying sequences of mathematical
expressions and assembling them into single inline math formulae. A line is
then treated as a text line if it
(a) contains only a sequence of words,
(b) if it contains at least two consecutive words and the number of inline math

expressions is not larger than the number of words,
(c) contains more than three consecutive words regardless of the number of

inline math expressions.
Everything else will be treated as display style mathematics.

In our example in Fig. 2 we get 8 math lines, whereas all others are
recognised as text lines, possibly containing inline mathematics.

3.3 Assembling Vertical Areas

In a next step we then combine consecutive lines as much as possible to
assemble meaningful multi-line areas. Here we also exploit the bounding box
information of each line by comparing it with the overall dimension of the print
area of the page. That latter can be easily computed by combining all bounding
boxes of all lines. This additional structural information can be further exploited
for setting content by the output drivers.

Consecutive display-style math lines are combined into single multi-
line math expressions. We thereby distinguish four different types of math
expressions:

Single Line Math A single display style math expression. Both previous and
next lines (if either exist) have to be text lines.

Multi Line Math A contiguous sequence of display style math lines.
Single Equation A single line display style math expression where a tag has

been identified that might function as a label for the formula. Tags are
identified if (1) a math line starts within a small threshold of the left
margin or ends within a small threshold of the right margin, but not both,
and (2) there is a discernible distance between the leftmost (or rightmost)
expression and the other expressions of that line. An identified tag can be
subsequently exploited by any translation driver.
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Multi Line Equation A contiguous sequence of display style math lines where
some lines have been identified as equation lines in the above sense.
Similar to math lines we also combine consecutive text lines into paragraphs,

where paragraphs are separated if
(a) there is a change of font size,
(b) the vertical space between lines is larger than the arithmetic median of

vertical space between all consecutive text lines identified on the page,
(c) the horizontal orientation of lines changes,
(d) if a line has a left indentation or the previous line ends prematurely.
We again distinguish a number of different types of single lines and paragraphs,
depending on their spatial relationship to the text margins:
Spanning Line A single line starting at the left margin and ending at the right

margin.
Flushleft Line A single line starting at the left margin but ending observably

before the right margin.
Flushright Line A single line ending at the right margin but starting observ-

ably after the left margin.
Centred Line A line that both starts and ends observably after the left margin

and before the right margin, respectively. It does not have to be fully centred
around the horizontal centre of the text area.

Indented Paragraph A paragraph of consecutive lines, where the first line is a
flushright line, while all other lines are spanning lines, with the exception
of the last line, that can be a flushleft line.

Unindented Paragraph A paragraph of consecutive lines, where all lines are
spanning lines, with the exception of the last line, that can be a flushleft
line.

Centred Paragraph A paragraph consisting of consecutive centred lines. This
paragraph can be both ragged left and ragged right.

Observe that for all the above we allow for a certain fuzziness, i.e., a line
only has to match within a small threshold of the left or right margin for
classification.

For our example in Fig. 2 the result of the layout analysis is given in the
middle column. We can see that the topmost line is recognised as a spanning
line, simply because it starts and ends with the margins of the text area in
spite of the significant white space in the line. Also note that the fifth area is
recognised as Single Equation with a right hand tag (11.23). On the other hand
the third area is classified as Multi Line Math although its fourth line is within
the right margin of the text area and could be considered an Equation. This is
due to the fact that there is no rightmost expression that has significant distance
to the other expressions.

3.4 Translation into Markup

Once the layout analysis is complete, specific drivers are employed to translate
the content into actual markup. Currently we have two drivers, one for MathML
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and one for LATEX markup. The most developed driver is a LATEX driver, which
attempts to set the text components as faithfully as possible according to the
classification derived in the layout analysis. For the translation of formulae we
make use of the already developed mechanisms described in Sec. 2. In addition
the contained font and spacing information is exploited to set characters and
words in the correct font and size as well as to include additional space if
necessary.

The result of the LATEX driver for our example is given in the right column of
Fig. 2. While the actual output is already close to the original input document,
there are still a number of discrepancies. We will therefore use this example
when we discuss some of the shortcomings of the translation in the next section.

4 Discussion

We have evaluated our current approach of combined layout analysis and
formula translation quantitatively against a small ground truth set of articles
similar to the one presented in [8]. These results are presented in [3] together
with a comparison to the results of the Infty system [9] on the same data, which
uses a conventional OCR approach to extract content and layout. The paper
also presents a qualitative comparison of our results with Infty’s.

In this section we will now concentrate on a qualitative discussion
exclusively for the results of our procedure and in particular point out some
of the shortcomings we have identified and that we intend to address in the
future.

The advantages of using projection profile cutting to find lines are that
of speed and efficiency, and it also works well on many standard layouts
including those with multiple columns. However the presence of figures, tables
and vertically overlapping, but not touching lines can severely impact its
performance. Also, the limits on large equations are sometimes erroneously
treated as separate lines. Therefore, a major improvement would be to use a
bottom up approach for line finding, employing image blurring, or to take into
account more of the information available including the semantics of the page.

In general, the current strict order of first identifying lines and then
linearising these separately is not ideal as it precludes some of the advantages
of our grammar for linearising multi-line mathematical expressions. As
demonstrated in [2], our grammar is capable of recognising and marking
up certain alignment points when parsing multiline mathematical expressions.
However, when parsing each line separately, these alignments can not be
detected. This effect can be seen in our example, where the Multi Line Math
expression is not correctly aligned.

Other obvious alignment problems can be observed in the section heading
in the example in Fig. 2, which, while being correctly recognised as a Flushleft
Line, is nevertheless too spread out. This is a consequence of the current
mechanism for detection of white space, which divides it into only five classes,
which are computed relative to the average distance between characters in
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expressions. While these spacing classes correspond to the spacing design in
LATEX [6], we do not use any absolute thresholds but only relative values. This
makes us independent from the actual tool that has produced the PDF as
well as from any specialised fonts used by the authors. Obviously, the spacing
information can therefore only be seen as a heuristic guide and is not necessarily
adhered to by all documents that we consider.

While this system to classify internal space in formulae is deliberately coarse
grained in order to aid the assignment of semantic information to components
of single mathematical formulae (see [4] for details), in the setting of text lines
it has the drawback that all white spaces above the relative threshold are not
further distinguished and consequently replaced with the same explicit large
space. A more sophisticated treatment of white space, possibly with the explicit
representation of distances, might ameliorate this problem.

This could then also lead to a more effective approach to horizontally
separate text areas in single lines or in vertically separate paragraphs. For
example, the very first line of Fig. 2 is classified exclusively as a Spanning Line.
However, it would be desirable to be able to split it at the position of the largest
white space in order to enable better recognition of the single components, i.e.,
running header and page number. This would then also allow assigning certain
semantic properties to areas, such as title, section headings and page numbers,
as the Infty system does, and which would lead to a more human-like LATEX
translation and therefore to a better modelling of vertical space.

Finally, our current algorithm for deciding whether a line is primarily
mathematics containing some embedded text or primarily text including some
inline mathematics is rather ad hoc. A more sophisticated mechanism to
distinguish mathematics from text and, in particular, display mathematics from
inline expressions, such as the techniques proposed in [5], will be explored in
the future.

5 Conclusion
In this paper we have presented significant improvements over previous
iterations of our software. By automating the location of mathematical formulae,
we have removed the most costly component, in terms of operator time, from
the system; that of manual clipping. We have also shown how the system can
be extended to not only deal with formula recognition, but also full layout
analysis. However, this is at an early stage of development and we envisage
significant improvements in the future, some of which we have discussed in
the previous section. For a full comparison to the Infty system [9], we refer the
reader to [3]. These results demonstrate the effectiveness of our approach.
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