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RADIAL SUBSPACES OF

BESOV-LIZORKIN-TRIEBEL SPACES

Winfried Sickel

Abstract. This is a summary of results obtained in collaboration with
Leszek Skrzypczak (Poznań) and Jan Vyb́ıral (Linz). We investigate
decay and boundedness properties of radial functions belonging to Besov
and Lizorkin-Triebel spaces. Our main tools are atomic decompositions in
combination with trace theorems.

1. Introduction

At the end of the seventies Strauss [43] was the first who observed that
there is an interplay between the regularity and decay properties of radial
functions. We recall his

Radial Lemma. Let d ≥ 2. Every radial function f ∈ H1(Rd) is almost

everywhere equal to a function f̃ , continuous for x 	= 0, such that

|f̃(x)| ≤ c |x| 1−d
2 ‖ f | H1(Rd)‖, (1)

where c depends only on d.

Strauss stated (1) with the extra condition |x| ≥ 1, but this restriction
is not needed. The Radial Lemma contains three different assertions:

(a) the existence of a representative of f , which is continuous outside
the origin;

(b) the decay of f near infinity;
(c) the limited unboundedness near the origin.
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170 WINFRIED SICKEL

These three properties do not extend to all functions inH1(Rd), of course.
In particular, H1(Rd) 	⊂ L∞(Rd), d ≥ 2, and consequently, functions in
H1(Rd) can be unbounded in the neighbourhood of any fixed point x ∈ Rd.
In a series of papers we have investigated the specific regularity and decay
properties of radial functions in the general framework of Besov-Lizorkin-
Triebel spaces. In our opinion a discussion of these properties in connection
with fractional order of smoothness results in a better understanding of the
announced interplay of regularity on the one side and local smoothness, de-
cay at infinity and limited unboundedness near the origin on the other side.
In the literature there are several approaches to fractional order of smooth-
ness. Probably most popular are Bessel potential spaces Hs

p(Rd), s ∈ R, or
Slobodeckij spaces W s

p (Rd) (s > 0, s 	∈ N). These scales would be enough
to explain the main interrelations. However, for some limiting cases these
scales are not sufficient. For that reason we shall discuss generalizations of
the Radial Lemma in the framework of Besov spaces Bs

p,q(Rd) and Lizorkin-

Triebel spaces F s
p,q(Rd). Let us recall that these scales essentially cover the

Bessel potential and the Slobodeckij spaces since

• Wm
p (Rd) = Fm

p,2(Rd), m ∈ N0, 1 < p <∞;

• Hs
p(Rd) = F s

p,2(Rd), s ∈ R, 1 < p <∞;

• W s
p (Rd) = F s

p,p(Rd) = Bs
p,p(Rd), s > 0, s 	∈ N, 1 ≤ p ≤ ∞,

where all identities have to be understood in the sense of equivalent norms,
see, e.g., [45, 2.2.2] and the references given there.

This survey is organized as follows.

1. Introduction
2. Atomic decompositions

2.1. Atomic decompositions of Besov and Lizorkin-Triebel spaces
2.2. Atomic decompositions of radial subspaces of Besov and Lizorkin-

Triebel spaces
3. Traces

3.1. Traces of radial subspaces with p =∞
3.2. Traces of radial subspaces with p <∞
3.3. Traces of radial subspaces of Sobolev spaces
3.4. The trace in S ′(R)
3.5. The trace in S ′(R) and weighted function spaces of Besov and Lizor-

kin-Triebel type
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RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 171

4. The regularity of radial functions outside the origin. I. Inhomogeneous
spaces
4.1. Some inequalities for radial functions
4.2. The continuity of radial functions outside the origin

5. Decay and boundedness properties of radial functions. I. Inhomogeneous
spaces
5.1. Decay and boundedness properties of radial functions in W 1

1 (Rd)
5.2. The behaviour of radial functions near infinity
5.3. The behaviour of radial functions near the origin

6. Compact embeddings on Rd. Part I
6.1. The compactness of the embedding RH1(Rd) ↪→ Lq(Rd)

6.2. The compactness of the embedding RAs
p,q(Rd) ↪→ Lu(Rd)

7. Regularity, decay and boundedness properties of radial functions in ho-
mogeneous spaces
7.1. Distribution spaces modulo polynomials
7.2. Radial classes of distributions
7.3. Radial subspaces of homogeneous Besov-Lizorkin-Triebel spaces
7.4. Homogeneous versus inhomogeneous spaces
7.5. The regularity of radial functions outside the origin. II. Homogeneous

spaces
7.6. Atomic decomopositions in homogeneous spaces
7.7. Decay properties of radial functions – nonlimiting cases
7.8. Decay properties of radial functions – limiting cases

8. Compact embeddings on Rd. Part II
8.1. Compactness of embeddings into sums of Lebesgue spaces
8.2. Compactness of the embeddings – exterior domains

9. Some final comments

At several places, in particular in Subsections 5.1, 5.2, 6.1 and 7.7, we
shall give proofs in simplified situations, hoping the reader gets a feeling for
the general situations as well. In all other cases detailed references are given.

Besov and Lizorkin-Triebel spaces are discussed at various places, we refer,
e.g., to the monographs [28], [32], [45], [46], [48]. We will not give definitions
here and refer for this to the quoted literature.

Notation. As usual, N denotes the natural numbers, N0 := N ∪ {0}, Z
denotes the integers and R the real numbers. If X and Y are two quasi-
Banach spaces, then the symbol X ↪→ Y indicates that the embedding is
continuous. X ↪→↪→ Y means that the embedding is compact. The set of all
linear and bounded operators T : X → Y , denoted by L(X,Y ), is equipped
with the standard quasi-norm. As usual, the symbol c denotes positive
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172 WINFRIED SICKEL

constants which depend only on the fixed parameters s, p, q and probably on
auxiliary functions, unless otherwise stated; its value may vary from line to
line. We will write “A " B” if there exist constants c1, c2 > 0 independent
of A and B such that c1A ≤ B ≤ c2A.

We shall use the following conventions throughout the paper:

• If E denotes a space of functions on Rd then by RE we mean the
subset of radial functions in E and we endow this subset with the
same quasi-norm as the original space.

• Inhomogeneous Besov and Lizorkin-Triebel spaces are denoted by Bs
p,q

and F s
p,q, respectively. If there is no reason to distinguish between

these two scales we will use the notation As
p,q. Similarly for the radial

subspaces.

• If an equivalence class {f} (equivalence with respect to coincidence
almost everywhere) contains a continuous representative then we call
the class continuous and speak of values of f at any point (by taking
the values of the continuous representative).

• Throughout the paper ψ ∈ C∞0 (Rd) denotes a specific radial cut-off
function, i.e., ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3/2.

• We shall use the abbreviations

σp(d) := dmax
(
0,

1

p
−1

)
and σp,q(d) := dmax

(
0,

1

p
−1,

1

q
−1

)
. (2)

• If not otherwise stated the parameter q varies in (0,∞], the parameter
p varies in (0,∞] if used in connection with Besov spaces and in (0,∞)
if used in connection with Lizorkin-Triebel spaces and finally s varies
in R.

2. Atomic decompositions

In many situations one needs descriptions of function spaces which allow
some type of localization. Usually this is difficult in connection with char-
acterizations using the Fourier transform. At least for 20 years, say from
1970–1990, the Fourier analytical way to describe Besov-Lizorkin-Triebel
spaces on Rd was the dominating one. The contributions of Frazier and
Jawerth [16], [17] to characterizations of these classes by means of atoms
have been a breakthrough to local descriptions. Their work has been also
the basis for our characterization of radial subspaces, see [35] and [24], which
we will recall below.
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RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 173

2.1. Atomic decompositions of Besov and Lizorkin-Triebel spaces.
In this survey we shall consider several different types of atoms. They are
not related to each other (but the philosophy behind is the same). We hope
that it will be always clear from the context with which type of atoms we
are working. For the following definition of an atom we refer to [16] or [46,
3.2.2]. For an open set Q and r > 0 we put rQ = {x ∈ Rd : dist(x,Q) < r}.
Observe that Q is always a subset of rQ whatever r is.

Definition 1. Let s ∈ R and let 0 < p ≤ ∞. Let L and M be integers
such that L ≥ 0 and M ≥ −1. Let Q ⊂ Rd be an open connected set with
diamQ = r.
(a) A smooth function a(x) is called an 1L-atom centered in Q if

supp a ⊂ r

2
Q,

sup
y∈Rd

|Dαa(y)| ≤ 1, |α| ≤ L.

(b) A smooth function a(x) is called an (s, p)L,M -atom centered in Q if

supp a ⊂ r

2
Q,

sup
y∈Rd

|Dαa(y)| ≤ rs−|α|−
d
p , |α| ≤ L,

∫

Rd

a(y)yα dy = 0, |α| ≤M.

Remark 1. IfM = −1, then the interpretation is that no moment condition
is required.

Originally coverings of Rd by dyadic cubes and related atomic decompo-
sitions were considered. We define

Qj,� := {x ∈ Rd : 2−j�i ≤ xi < 2−j(�i + 1), i = 1, . . . , d}, j ∈ N0, � ∈ Zd.

Proposition 1. Suppose

L ≥ max(0, [s] + 1) and M ≥ max([σp − s],−1)

(here [ · ] denotes the integer part). Then any f ∈ Bs
p,q(Rd) can be represented

by

f =

∞∑

j=0

∞∑

�=0

sj,�aj,� (convergence in S ′(Rd)), (3)

kniha_Institute_of_Mathematics_v181   181kniha_Institute_of_Mathematics_v181   181 7.9.2011   9:45:597.9.2011   9:45:59



174 WINFRIED SICKEL

where a0,� is an 1L-atom centered at the cube Q0,�, and aj,�, j 	= 0 is an
(s, p)L,M -atom centered at the cube Qj,�; sj,� are complex numbers satisfying

‖ (sj,�)j,� | bp,q‖ :=
( ∞∑

j=0

( ∞∑

�=0

|sj,�|p
)q/p

)1/q

<∞. (4)

Furthermore, any distribution f ∈ S ′(Rd), given by (3), with (4) is an ele-
ment of Bs

p,q(Rd). The infimum of (4) with respect to all admissible repre-

sentations as in (3) yields an equivalent quasi-norm in Bs
p,q(Rd).

Remark 2. (i) Nowadays characterizations of Besov spaces by wavelets
are widely used. The atomic decompositions follow the same philosophy
(discretization of the quasi-norm) but allow a greater flexibility. This will
be used also in our treatment.

(ii) We shall call a representation (3) optimal in case

‖ f | Bs
p,q(Rd)‖ "

( ∞∑

j=0

( ∞∑

�=0

|sj,�|p
)q/p

)1/q

.

It is known how to construct optimal atomic decompositions.

A similar characterization can be given in case of Lizorkin-Triebel spaces.
Here χj,� denotes the characteristic function of the dyadic cube Qj,�.

Proposition 2. Suppose

L ≥ max(0, [s] + 1) and M ≥ max([σp,q − s],−1).

Then any f ∈ F s
p,q(Rd) can be represented by (3) and this time sj,� are

complex numbers satisfying

‖ (sj,�)j,� | fp,q‖ :=
∥∥∥
( ∞∑

j=0

∞∑

�=0

(2jd/p|sj,�χj,�|)q
)1/q ∣∣∣ Lp(Rd)

∥∥∥ <∞. (5)

Furthermore, any distribution f ∈ S ′(Rd), given by (3), with (5) is an ele-
ment of F s

p,q(Rd), The infimum of (5) with respect to all admissible repre-

sentations as in (3) yields an equivalent quasi-norm in F s
p,q(Rd).

Remark 3. (i) Proofs of Propositions 1, 2 can be found in [17] and [48,
1.5.1].

(ii) We shall not give definitions of F s
p,q(Rd) and Bs

p,q(Rd) here. For this
and many further equivalent descriptions of these classes of distributions we
refer to the literature, see, e.g., [28], [45], [46], [48] or [32]. Formally one
could take Proposition 1 and Proposition 2 as definitions.
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RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 175

Now we turn to more general atomic decompositions what concerns the
underlying coverings of Rd.

Definition 2. We say that the sequence (Ωj)
∞
j=0 = ((Ωj,�)

∞
�=0)

∞
j=0 of cover-

ings is regular if the following conditions are satisfied:
(a) Rd ⊂ ⋃

�∈N Ωj,�, j = 0, 1, . . . ;
(b) there exists some positive number ε0 such that for all ε < ε0 the sequences
of coverings (ε2−jΩj,�)

∞
�=0 have finite multiplicity with uniform bound of

multiplicity with respect to ε and j ∈ N0;
(c) there exist positive numbers Bd and Cd (depending only on the dimen-
sion d) such that

diamΩj,� ≤ Bd2
−j and Cd2

−jd ≤ |Ωj,�|.

Remark 4. By ωn we denote the volume of the unit ball in Rd. Let Ad =
(Cd/ωd)

1/d. Then condition (c) implies

Ad2
−j ≤ diamΩj,� ≤ Bd2

−j

and
Cd2

−jd ≤ |Ωj,�| ≤ Bd
dωd2

−jd

for all j and all �.

Lemma 1. Let (Ωj)
∞
j=0 be a regular sequence of coverings. Then Proposi-

tions 1, 2 remain true by replacing the dyadic cube Qj,� by Ωj,�.

Remark 5. The not very difficult proof of this lemma can be found in [35].

2.2. Atomic decompositions of radial subspaces. Later on we shall
mainly deal with radial functions but for the moment we prefer a bit greater
generality.

Definition 3. (i) Let f ∈ S ′(Rd). The distribution f is called radial if it is
invariant under rotations around the origin, i.e.

f(ϕ ◦ Φ) = f(ϕ), ϕ ∈ S(Rd),

for all such rotations Φ.
(ii) RAs

p,q(Rd) is the collection of all radial distributions f ∈ As
p,q(Rd).

In [35] and [24] we constructed a regular sequence of coverings adapted to
the radial situation which we now recall. Consider the annuli (balls if k = 0)

Pj,k :=
{
x ∈ Rd : k2−j ≤ |x| < (k + 1)2−j

}
, j = 0, 1, . . . , k = 0, 1, . . . .
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176 WINFRIED SICKEL

Then there is a sequence (Ωj)
∞
j=0 = ((Ωj,k,�)k,�)

∞
j=0 of coverings of Rd such

that

(a) all Ωj,k,� are balls with center in xj,k,� s.t. xj,0,1 = 0 and |xj,k,�| =
2−j(k + 1/2) if k ≥ 1;

(b) diamΩj,k,� = 12 · 2−j for all k and all �;

(c) Pj,k ⊂
C(d,k)⋃
�=1

Ωj,k,�, j = 0, 1, . . . , k = 0, 1, . . . , where the numbers

C(d, k) satisfy the relations C(d, k) ≤ (2k + 1)d−1, C(d, 0) = 1;

(d) the sums
∞∑
k=0

C(d,k)∑
�=1

χj,k,�(x) are uniformly bounded in x ∈ Rd and

j = 0, 1, . . . (here χj,k,� denotes the characteristic function of Ωj,k,�);
(e) Ωj,k,� = {x ∈ Rd : 2jx ∈ Ω0,k,�} for all j, k and �;
(f) there exists a natural number K (independent of j and k) such that

{(x1, 0, . . . , 0) : x1 ∈ R} ∩ diam(Ωj,k,�)

2
Ωj,k,� = ∅ if � > K

(with an appropriate enumeration).

We collect some properties of related atomic decompositions. To do this
it is convenient to introduce some sequence spaces.

Definition 4. Let χ̃j,k denote the characteristic function of the set Pj,k.
Then we define

bp,q,d :=
{
s = (sj,k)j,k :

‖ s | bp,q,d‖ =
( ∞∑

j=0

( ∞∑

k=0

(1 + k)d−1|sj,k|p
)q/p)1/q

<∞
}
.

and

fp,q,d :=
{
s = (sj,k)j,k :

‖ s | fp,q,d‖ =
∥∥∥
( ∞∑

j=0

∞∑

k=0

|sj,k|q2
jdq
p χ̃j,k(·)

)1/q ∣∣∣ Lp(Rd)
∥∥∥ <∞

}

with the usual modifications if p and/or q are infinite.

Remark 6. Observe bp,p,d = fp,p,d in the sense of equivalent quasi-norms.
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More or less as a direct consequence of Lemma 1 and the fact that de-
scribed sequence (Ωj)

∞
j=0 = ((Ωj,k,�)k,�)

∞
j=0 is regular, one obtains the fol-

lowing description of radial subspaces which will be basic tool for us, see [35]
and [24] for all details.

(i) Each f ∈ RAs
p,q(Rd) can be decomposed into

f =
∞∑

j=0

∞∑

k=0

C(d,k)∑

�=1

sj,kaj,k,� (convergence in S ′(Rd)), (6)

where the functions aj,k,� are (s, p)L,M -atoms with respect to Ωj,k,�

(j ≥ 1), and the functions a0,k,� are 1L-atoms with respect to Ω0,k,�.

(ii) Any formal series
∑∞

j=0

∑∞
k=0

∑C(d,k)
�=1 sj,kaj,k,� converges in S ′(Rd)

with limit in As
p,q(Rd) if the sequence s = (sj,k)j,k belongs to ap,q,d

and if the aj,k,� are (s, p)L,M -atoms with respect to Ωj,k,� (j ≥ 1),
and the a0,k,� are 1L-atoms with respect to Ω0,k,�. There exists a
universal constant such that

∥∥∥
∞∑

j=0

∞∑

k=0

C(d,k)∑

�=1

sj,kaj,k,�

∣∣∣ As
p,q(Rd)

∥∥∥ ≤ c ‖ s | ap,q,d‖ (7)

holds for all sequences s = (sj,k)j,k.
(iii) There exists a constant c such that for any f ∈ RAs

p,q(Rd) there
exists an atomic decomposition as in (6) satisfying

‖ (sj,k)j,k | ap,q,d‖ ≤ c ‖ f | As
p,q(Rd)‖. (8)

(iv) The infimum on the left-hand side in (7) with respect to all admissible
representations (6) yields an equivalent quasi-norm on RAs

p,q(Rd).

Remark 7. (i) Here a = f if A = F and a = b if A = B, respectively.
(ii) A different approach to atomic decompositions of radial subspaces has
been given by Epperson and Frazier [14]. We shall recall these results in
connection with homogeneous spaces in Subsection 7.6.

3. Traces

Traces of radial subspaces are of interest for its own. However, we shall use
them here mainly in connection with the proof of the higher regularity of
radial functions outside the origin.
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178 WINFRIED SICKEL

Let d ≥ 2. Let f : Rd → C be a locally integrable radial function. By
using a Lebesgue point argument its restriction

f0(t) := f(t, 0, . . . , 0), t ∈ R

is well defined a.e. on R. However, this restriction need not be locally inte-
grable. A simple example is given by the function

f(x) := ψ(x)|x|−1, x ∈ Rd.

Furthermore, if we start with a measurable and even function g : R → C,
s.t. g is locally integrable on all intervals (a, b), 0 < a < b <∞, then (again
using a Lebesgue point argument) the function

f(x) := g(|x|), x ∈ Rd

is well-defined a.e. on Rd and is radial, of course. In what follows we shall
study properties of the associated operators

tr : f �→ f0 and ext : g �→ f.

Both operators are defined pointwise only. Later on we shall have a short look
onto the existence of the trace in the distributional sense, see Subsection 3.4.
Probably it would be more natural to deal with functions defined on [0,∞)
in this context. However, that would result in more complicated descriptions
of the trace spaces. So, our target spaces will be spaces of even functions
defined on R.

3.1. Traces of radial subspaces with p = ∞. Let m ∈ N0. Then
Cm(Rd) denotes the collection of all functions f : Rd → C such that all
derivatives Dαf of order |α| ≤ m exist, are uniformly continuous and
bounded. We put

‖ f | Cm(Rd)‖ :=
∑

|α|≤m

‖Dαf | L∞(Rd)‖.

Theorem 1. Let d ≥ 2. For m ∈ N0 the mapping tr is a linear isomorphism
of RCm(Rd) onto RCm(R) with inverse ext.

Remark 8. (i) If we replace uniformly continuous by continuous in the
definition of the spaces Cm(Rd) Theorem 1 remains true with the same
proof.

(ii) The proof of Theorem 1 is elementary and may be found in [37].

Using real interpolation it is not difficult to derive the following result for
the spaces of Hölder-Zygmund type, see also [37].
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RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 179

Theorem 2. Let s > 0 and let 0 < q ≤ ∞. Then the mapping tr is a linear
isomorphism of RBs

∞,q(Rd) onto RBs
∞,q(R) with inverse ext.

3.2. Traces of radial subspaces with p < ∞. Now we turn to the
description of the trace classes of radial Besov and Lizorkin-Triebel spaces
with p <∞. Again we start with an almost trivial result. We need a further
notation. By Lp(R, w) we denote the weighted Lebesgue space equipped
with the norm

‖ f | Lp(R, w)‖ :=
(∫ ∞

−∞
|f(t)|pw(t) dt

)1/p

with usual modification if p =∞.

Lemma 2. Let d ≥ 2.
(i) Let 0 < p <∞. Then tr : RLp(Rd)→ RLp(R, |t|d−1) is a linear isomor-
phism with inverse ext.
(ii) Let p = ∞. Then tr : RL∞(Rd) → RL∞(R) is a linear isomorphism
with inverse ext.

Based on this elementary lemma we would like to direct the attention
of the reader to the following observation. Whenever the Besov-Lizorkin-
Triebel space As

p,q(Rd) is contained in L1(Rd) + L∞(Rd), then tr is well-
defined on its radial subspace. This is in sharp contrast to the general theory
of traces on these spaces. To guarantee that tr is meaningful on As

p,q(Rd)
one has to require

s >
d− 1

p
+max

(
0,

1

p
− 1

)
,

cf. e.g. [23], [16], [45, Rem. 2.7.2/4] or [15]. On the other hand we have

Bs
p,q(Rd), F s

p,q(Rd) ↪→ L1(Rd) + L∞(Rd)

if s > dmax
(
0, 1

p − 1
)
, see, e.g., [39]. Since

dmax
(
0,

1

p
− 1

)
<

d− 1

p
+max

(
0,

1

p
− 1

)

we have the existence of tr with respect to RAs
p,q(Rd) for a wider range of

parameters than for As
p,q(Rd).

Below we shall develop a description of the traces of the radial subspaces
of Bs

p,q(Rd) and F s
p,q(Rd) in terms of atoms. To explain this we need to in-

troduce first an appropriate notion of an atom and second, adapted sequence
spaces.
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Definition 5. Let L ≥ 0 be an integer. Let I be a set either of the form
I = [−a, a] or of the form I = [−b,−a] ∪ [a, b] for some 0 < a < b <∞. An
even function g ∈ CL(R) is called an even L-atom centered at I if

max
t∈R

|g(n)(t)| ≤ |I|−n, 0 ≤ n ≤ L,

and if either

supp g ⊂
[
−3a

2
,
3a

2

]
in case I = [−a, a],

or

supp g ⊂
[
−3b− a

2
,−3a− b

2

]
∪
[3a− b

2
,
3b− a

2

]

in case I = [−b,−a] ∪ [a, b].

Definition 6. Let

χ#
j,k(t) :=

{
1 if 2−jk ≤ |t| ≤ 2−j(k + 1),

0 otherwise,
t ∈ R.

Then we define

bsp,q,d :=

{
s = (sj,k)j,k :

‖ s | bsp,q,d‖ =
( ∞∑

j=0

2j(s−
d
p )q

( ∞∑

k=0

(1 + k)d−1|sj,k|p
)q/p)1/q

<∞
}

and

fs
p,q,d :=

{
s = (sj,k)j,k :

‖ s | fs
p,q,d‖ =

∥∥∥
( ∞∑

j=0

2jsq
∞∑

k=0

|sj,k|qχ#
j,k(·)

)1/q ∣∣∣ Lp(R, |t|d−1)
∥∥∥ <∞

}
,

respectively.

Remark 9. Observe bsp,p,d = fs
p,p,d in the sense of equivalent quasi-norms.

Adapted to these sequence spaces we define now function spaces on R.
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Definition 7. Let L ∈ N0, A ∈ {B,F} and a ∈ {b, f} (with a = b if A = B
and a = f if A = F ). Then TAs

p,q(R, L, d) is the collection of all functions
g : R→ C such that there exists a decomposition

g(t) =
∞∑

j=0

∞∑

k=0

sj,kgj,k(t) (9)

(convergence in Lmax(1,p)(R, |t|d−1)), where the sequence (sj,k)j,k belongs to

asp,q,d and the functions gj,k are even L-atoms centered at either [−2−j , 2−j ]
if k = 0 or at

[−2−j(k + 1),−2−jk] ∪ [2−jk, 2−j(k + 1)]

if k > 0. We put

‖ g | TAs
p,q(R, L, d)‖ := inf

{
‖ (sj,k) | asp,q,d‖ : (9) holds

}
.

For a real number s we denote by [s] the integer part, i.e. the largest
integer m such that m ≤ s.

Theorem 3. Let d ≥ 2 and suppose 0 < p <∞.

(i) Suppose s > σp(d) and L ≥ [s] + 1. Then the mapping tr is a linear
isomorphism of RBs

p,q(Rd) onto TBs
p,q(R, L, d) with inverse ext.

(ii) Suppose s > σp,q(d) and L ≥ [s] + 1. Then the mapping tr is a linear
isomorphism of RF s

p,q(Rd) onto TF s
p,q(R, L, d) with inverse ext.

Remark 10. (i) Let 0 < p ≤ 1 < q ≤ ∞. Then the spaces RB
σp
p,q(Rd)

contain singular distributions, see [39]. In particular, the Dirac delta dis-

tribution belongs to RB
d
p−d
p,∞ (Rd), see, e.g., [32, Rem. 2.2.4/3]. Hence, our

pointwise defined mapping tr is not meaningful on those spaces, or, with
other words, Theorem 3 does not extend to values s < σp(d).

(ii) Theorem 3 is proved in [37]. The proof is not very difficult and makes
use of standard arguments in the field of atomic decompositions. The inter-
esting point here consists in the fact that our arguments are not restricted
to S ′(R), see also Subsection 3.4.

Outside the origin radial distributions are more regular. We shall discuss
several examples for this claim. Here is the first one, proved in [37] by using
the atomic decompositions of radial distributions recalled in Subsection 2.2.
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Theorem 4. Let d ≥ 2 and 0 < p < ∞. Suppose s > max
(
0, 1

p − 1
)
. Let

f ∈ RAs
p,q(Rd) s.t. 0 	∈ supp f . Then f is a regular distribution in S ′(Rd),

in fact, f ∈ L1(Rd).

Remark 11. There is a nice and simple example which explains the sharp-
ness of the restrictions in Theorem 4. We consider the singular distribution
f defined by

ϕ �→
∫

|x|=1

ϕ(x) dx, ϕ ∈ S(Rd).

By using the wavelet characterization of Besov spaces, it is not difficult
to prove that the spherical mean distribution f belongs to the spaces

RB
1
p−1
p,∞ (Rd) for all p.

One can supplement Theorem 4. Essentially by using the same methods
one can prove the following regularity result for the trace of a radial function,
see [37].

Theorem 5. Let d ≥ 2, 0 < p < ∞ and 0 < q ≤ ∞. Suppose s >
max

(
0, 1

p − 1
)
. Let f ∈ RAs

p,q(Rd) s.t. 0 	∈ supp f . Then f0 = tr f belongs

to As
p,q(R).

Remark 12. As mentioned above

As
p,q(R) ↪→ L1(R) + L∞(R) if s > σp(1) = max

(
0,

1

p
− 1

)
,

which shows again that we deal with regular distributions. However, in
Theorem 5 some additional regularity is proved.

3.3. Traces of radial subspaces of Sobolev spaces. Clearly, one can
expect that the description of the traces of radial Sobolev spaces can be
given in more elementary terms. We discuss a few examples without having
the complete theory.

Theorem 6. Let d ≥ 2 and 1 ≤ p <∞.
(i) The mapping tr is a linear isomorphism (with inverse ext) of RW 1

p (Rd)
onto the closure of RC∞0 (R) with respect to the norm

‖ g | Lp(R, |t|d−1)‖+ ‖ g′ | Lp(R, |t|d−1)‖.

(ii) The mapping tr is a linear isomorphism (with inverse ext) of RW 2
p (Rd)

onto the closure of RC∞0 (R) with respect to the norm

‖ g | Lp(R, |t|d−1)‖+ ‖ g′ | Lp(R, |t|d−1)‖
+ ‖ g′/t | Lp(R, |t|d−1)‖+ ‖ g′′ | Lp(R, |t|d−1)‖.
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Remark 13. Both statements have elementary proofs, see [37]. However,
the complete extension to higher order Sobolev spaces is open.

There are several ways to define Sobolev spaces on Rd. For instance, if
1 < p <∞ we have

f ∈W 2m
p (Rd) ⇐⇒ f ∈ Lp(Rd) and Δmf ∈ Lp(Rd).

Such an equivalence does not extend to p = 1 or p = ∞ if d ≥ 2, see [41,
pp. 135/160]. Recall that the Laplace operator Δ applied to a radial function
yields a radial function. In particular, we have

Δf(x) = Drf0(r) := f ′′0 (r) +
d− 1

r
f ′0(r), r = |x|,

in case that f is radial and tr f = f0. Obviously, if f ∈ RC∞0 (Rd), then

‖ f | Lp(Rd)‖+ ‖Δmf | Lp(Rd)‖

=
( πd/2

Γ(d/2)

)1/p(
‖ f0 | Lp(R, |t|d−1)‖+ ‖Dm

r f0 | Lp(R, |t|d−1)‖
)
.

This proves the next characterization.

Theorem 7. Let 1 < p < ∞ and m ∈ N. Then the mapping tr yields
a linear isomorphism (with inverse ext) of RW 2m

p (Rd) onto the closure of
RC∞0 (R) with respect to the norm

‖ f0 | Lp(R, |t|d−1)‖+ ‖Dm
r f0 | Lp(R, |t|d−1)‖.

Remark 14. By means of Hardy-type inequalities one can simplify the
terms ‖Dm

r f0 | Lp(R, |t|d−1)‖ to some extent, see Theorem 6(ii) for a com-
parison. We do not go into detail.

3.4. The trace in S ′(R). Many times applications of traces are connected
with boundary value problems. In such a context the continuity of tr consid-
ered as a mapping into S′ is essential. Again we consider the simple situation
of the Lp-spaces first.

Lemma 3. Let d ≥ 2 and let 0 < p <∞. Then RLp(R, |t|d−1) ⊂ S′(R) if,
and only if, d < p.

From the known embedding relations of RAs
p,q(Rd) into Lu-spaces one

obtains one half of the proof of the following general result.
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Theorem 8. Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(a) Let s > σp(d) and L ≥ [s] + 1. Then the following assertions are equi-
valent:

(i) The mapping tr maps RBs
p,q(Rd) into S′(R).

(ii) The mapping tr : RBs
p,q(Rd)→ S′(R) is continuous.

(iii) We have TBs
p,q(R, L, d) ↪→ S′(R).

(iv) We have either s > d
(
1
p − 1

d

)
or s = d

(
1
p − 1

d

)
and q ≤ 1.

(b) Let s > σp,q(d) and L ≥ [s]+1. Then following assertions are equivalent:

(i) The mapping tr maps RF s
p,q(Rd) into S′(R).

(ii) The mapping tr : RF s
p,q(Rd)→ S′(R) is continuous.

(iii) We have TF s
p,q(R, L, d) ↪→ S′(R).

(iv) We have either s > d
(
1
p − 1

d

)
or s = d

(
1
p − 1

d

)
and 0 < p ≤ 1.

Remark 15. Theorem 8 is proved in [37].

3.5. The trace in S ′(R) and weighted function spaces of Besov and
Lizorkin-Triebel type. Weighted function spaces of Besov and Lizorkin-
Triebel type, denoted by Bs

p,q(R, w) and F s
p,q(R, w), respectively, are a well-

developed subject in the literature, we refer to [7], [8], [33]. Fourier analytic
definitions as well as characterizations by atoms are given under various
restrictions on the weights, see e.g. [6], [7], [8], [20], [21], [34]. In this
subsection we are interested in these spaces with respect to the weights
wd−1(t) := |t|d−1, t ∈ R, d ≥ 2. Of course, these weights belong to the
Muckenhoupt class A∞, more exactly wd−1 ∈ Ar for any r > d, see [42].

Theorem 9. Let d ≥ 2 and 0 < p <∞.
(i) Suppose s > σp(d) and let L ≥ [s] + 1. If TBs

p,q(R, L, d) ↪→ S′(R) (see
Theorem 8), then TBs

p,q(R, L, d) = RBs
p,q(R, wd−1) in the sense of equivalent

quasi-norms.
(ii) Suppose s > σp,q(d) and let L ≥ [s] + 1. If TF s

p,q(R, L, d) ↪→ S′(R) (see
Theorem 8), then TF s

p,q(R, L, d) = RF s
p,q(R, wd−1) in the sense of equivalent

quasi-norms.

Remark 16. (i) We add some statements concerning the regularity of the
most prominent singular distribution, namely δ : ϕ→ ϕ(0), ϕ ∈ S(Rd). This
tempered distribution has the following regularity properties:

• First we deal with the situation on Rd. We have δ ∈ RB
d
p−d
p,∞ (Rd)

(but δ 	∈ RB
d
p−d
p,q (Rd) for q < ∞ and δ 	∈ RF

d
p−d
p,∞ (Rd)), see, e.g., [32,

Rem. 2.2.4/3].
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• Now we turn to the situation on R. By using more or less the

same arguments as on Rd one can show δ ∈ B
d
p−1
p,∞ (R, wd−1) (but

δ 	∈ B
d
p−1
p,q (R, wd−1) for any q <∞ and δ 	∈ F

d
p−1
p,∞ (R, wd−1)).

(ii) For the simple proof of Theorem 9 we refer to [37]. It consists
in a comparison of the atomic characterizations of TAs

p,q(R, L, d) and of
RAs

p,q(R, wd−1), respectively. For the latter we refer to [20].
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Figure 1.

4. The regularity of radial functions outside the origin.
I. Inhomogeneous spaces

First assertions concerning the regularity of radial functions we have already
given in Theorems 4, 5. In this section we continue these investigations.

4.1. Some inequalities for radial functions. Let f be a radial function
such that supp f ⊂ {x ∈ Rd : |x| ≥ τ} for some τ > 0. Then the following
inequality is obvious:

‖ f0 | Lp(R)‖ ≤ τ−(d−1)/p
(Γ(d/2)

πd/2

)1/p

‖ f | Lp(Rd)‖.

An extension to first or second order Sobolev spaces can be done by using
Theorem 6. However, an extension to all spaces under consideration here
is less obvious. Comparing the atomic decompositions of Theorem 3 with
the known atomic or wavelet characterizations of Bs

p,q(R) and F s
p,q(R) one

obtains the following, see [37].
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Proposition 3. Let d ≥ 2, 0 < p <∞, and τ > 0.
(i) We suppose s > σp(d). If f ∈ RBs

p,q(Rd) such that

supp f ⊂ {x ∈ Rd : |x| ≥ τ} (10)

then its trace f0 belongs to Bs
p,q(R). Furthermore, there exists a constant c

(not depending on f and τ) such that

‖ f0 | Bs
p,q(R)‖ ≤ cτ−(d−1)/p‖ f | Bs

p,q(Rd)‖
holds for all such functions f and all τ > 0.
(ii) We suppose s > σp,q(d). If f ∈ RF s

p,q(Rd) such that (10) holds, then
its trace f0 belongs to F s

p,q(R). Furthermore, there exists a constant c (not
depending on f and τ) such that

‖ f0 | F s
p,q(R)‖ ≤ cτ−(d−1)/p‖ f | F s

p,q(Rd)‖
holds for all such functions f all τ > 0.

Proposition 3 has a partial inverse.

Proposition 4. Let d ≥ 2, 0 < p <∞, and 0 < a < b <∞.
(i) We suppose s > σp(d). If g ∈ RBs

p,q(R) such that

supp g ⊂ {x ∈ R : a ≤ |x| ≤ b} (11)

then the radial function f := ext g belongs to RBs
p,q(Rd) and there exist

positive constants A, B such that

A‖ g | Bs
p,q(R)‖ ≤ ‖ f | Bs

p,q(Rd)‖ ≤ B‖ g | Bs
p,q(R)‖.

(ii) We suppose s > σp,q(d). If g ∈ RF s
p,q(R) such that (11) holds, then

the radial function f := ext g belongs to RF s
p,q(Rd) and there exist positive

constants A,B such that

A‖ g | F s
p,q(R)‖ ≤ ‖ f | F s

p,q(Rd)‖ ≤ B‖ g | F s
p,q(R)‖.

4.2. The continuity of radial functions outside the origin. For our
next result we need Hölder-Zygmund spaces. Recall, that the Hölder classes
Cs(Rd) are special cases of Besov spaces if s > 0, but not a natural number.
In fact Cs(Rd) = Bs

∞,∞(Rd) in the sense of equivalent norms if s 	∈ N0.

Of course, also the spaces Bs
∞,∞(Rd) with s ∈ N allow a characterization

by differences. These are the Zygmund-type spaces. We refer to [45, 2.2.2,
2.5.7] and [46, 3.5.3]. We shall use the abbreviation

Zs(Rd) = Bs
∞,∞(Rd), s > 0.

Taking into account the well-known embedding relations for Besov as well as
for Lizorkin-Triebel spaces, defined on R, Theorem 5 implies in particular:
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Corollary 1. Let d ≥ 2, 0 < p <∞ and s > 1/p. Let ϕ be a smooth radial
function, uniformly bounded together with all its derivatives, and such that
0 	∈ suppϕ. If f ∈ RAs

p,q(Rd), then ϕf ∈ Zs−1/p(Rd).

Remark 17. P. L. Lions [26] has proved the counterpart of Corollary 1
for first order Sobolev spaces. We also dealt in [35] with these problems.

Of particular importance for us will be the continuity of radial functions.
Again by combining Theorem 5 with the known embedding relations for
Besov-Lizorkin-Triebel spaces on R we obtain:

Corollary 2. Let d ≥ 2, 0 < p <∞ and τ > 0.
(i) If either s > 1/p or s = 1/p and q ≤ 1 then f ∈ RBs

p,q(Rd) is uniformly
continuous on the set |x| ≥ τ .
(ii) If either s > 1/p or s = 1/p and p ≤ 1 then f ∈ RF s

p,q(Rd) is uniformly
continuous on the set |x| ≥ τ .

By looking at the restrictions in Corollary 2 we introduce the following
set of parameters.

Definition 8. (i) We say (s, p, q) belongs to the set U(B) if (s, p, q) satisfies
the restrictions in part (i) of Corollary 2.
(ii) The triple (s, p, q) belongs to the set U(F ) if (s, p, q) satisfies the restric-
tions in part (ii) of Corollary 2.

Remark 18. (a) The abbreviation (s, p, q) ∈ U(A) will be used with the
obvious meaning.

(b) Let 1 ≤ p = p0 <∞ be fixed. Then there is always a largest space in
the set

{Bs
p0,q(R

d) : (s, p0, q) ∈ U(B)} ∪ {F s
p0,q(R

d) : (s, p0, q) ∈ U(F )}.

This space is given either by F 1
1,∞(Rd) if p0 = 1 or by B

1/p0

p0,1
(Rd) if 1 <

p0 <∞. If p0 < 1, then obviously B
1/p0

p0,1
(Rd) is the largest Besov space and

F
1/p0
p0,∞(Rd) is the largest Lizorkin-Triebel space in the above family. However,

these spaces are incomparable.

5. Decay and boundedness properties of radial functions.
I. Inhomogeneous spaces

We deal with improvements of Strauss’ Radial Lemma. Decay can only be
expected if we measure smoothness in function spaces built on Lp(Rd) with
p <∞.
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5.1. Decay and boundedness properties of radial functions in
W 1

1 (Rd). It is instructive to have a short look onto the case of first order
Sobolev spaces. Let f = g(r(x)) ∈ RC∞0 (Rd). Then

∂f

∂xi
(x) = g′(r)

xi

r
, r = |x| > 0, i = 1, . . . , d.

Hence,
‖ |∇f(x)| | Lp(Rd)‖ = cd‖ g′ | Lp(R, |t|d−1)‖,

where 1 ≤ p <∞. Next we apply the identity

g(r) = −
∫ ∞

r

g′(t) dt

and obtain

|g(r)| ≤
∫ ∞

r

|g′(t)|dt ≤ r−(d−1)

∫ ∞

r

td−1|g′(t)| dt.

This extends to all functions in RW 1
1 (Rd) by a density argument. On this

elementary way we have proved the inequality

|x|d−1|f(x)| = rd−1|g(r)| ≤ 1

cd

∫

|x|>r

|∇f(x)| dx

≤ 1

cd
‖∇f(x)‖1.

(12)

This inequality can be interpreted in several ways:

• The possible unboundedness in the origin is limited.

• There is some decay, uniformly in f , if |x| tends to +∞.

• We have lim|x|→∞ |x|d−1|f(x)| = 0 for all f ∈ RW 1
1 (Rd).

• It makes sense to switch to homogeneous function spaces, since in (12)
only the norm of the homogeneous Sobolev space occurs.

Now we discuss the extension of these assertions to fractional order of
smoothness.

5.2. The behaviour of radial functions near infinity. Suppose that
(s, p, q) ∈ U(A). Then f ∈ RAs

p,q(Rd) is uniformly continuous near infinity

and belongs to Lp(Rd). This implies lim|x|→∞ |f(x)| = 0. However, much
more is true.
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Theorem 10. Let d ≥ 2 and 0 < p <∞.
(i) Suppose (s, p, q) ∈ U(A). Then there exists a constant c s.t.

|x|(d−1)/p|f(x)| ≤ c‖ f | As
p,q(Rd)‖ (13)

holds for all |x| ≥ 1 and all f ∈ RAs
p,q(Rd).

(ii) Suppose (s, p, q) ∈ U(A). Then

lim
|x|→∞

|x| d−1
p |f(x)| = 0

holds for all f ∈ RAs
p,q(Rd).

(iii) Suppose (s, p, q) ∈ U(A). Then there exists a constant c > 0 such that
for all x, |x| > 1, there exists a smooth radial function f ∈ RAs

p,q(Rd),

‖ f | As
p,q(Rd)‖ = 1, s.t.

|x| d−1
p |f(x)| ≥ c. (14)

(iv) Suppose (s, p, q) 	∈ U(A) and 1
p > σp(d). We assume also that 1

p > σq(d)

in the F -case. Then, for all sequences (xj)∞j=1 ⊂ Rd \ {0} s.t. limj→∞ |xj | =
∞, there exists a radial function f ∈ RAs

p,q(Rd), ‖ f | As
p,q(Rd)‖ = 1, s.t. f

is unbounded in any neighbourhood of xj, j ∈ N.
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Figure 2.

Remark 19. (i) For p = 1 there are two other spaces for which such a decay
estimate as in (13) hold. As we have seen above, it remains true for radial
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190 WINFRIED SICKEL

functions in W 1
1 (Rd). In addition, it remains correct for the larger class of

radial functions of bounded variation, see [37].
(ii) Increasing s (for fixed p) is not improving the decay rate. In the case
of Banach spaces, i.e., p, q ≥ 1, the additional assumptions in point (iv)
are always fullfiled. Hence, the largest spaces, guaranteeing the decay rate
(d− 1)/p, are spaces with s = 1/p, see Remark 18.
(iii) Observe that in part (iii) of the theorem the function depends on |x|.
There is no function in RAs

p,q(Rd) such that (14) holds for all x, |x| ≥ 1,

simultaneously. The naive construction f(x) := (1 − ψ(x))|x| 1−d
p , x ∈ Rd,

does not belong to Lp(Rd).
(iv) Of course, formula (13) generalizes the estimate (1). Also Coleman,
Glazer and Martin [10] have dealt with (1). P. L. Lions [26] proved a
p-version of the Radial Lemma.
(v) In case A = B the theorem has been proved in [35]. The general case
was treated in [37].

A partial proof of Theorem 10. We shall partly prove (i) and (iii) of
Theorem 10.
Step 1. To demonstrate the usefulness of the atomic decompositions of radial
functions, described in Subsection 2.2, we give a partial proof of the inequal-
ity (13). We concentrate on Besov spaces. It will be enough to consider the
case s = 1/p and q = 1.

Let |x| ≥ 1. Let f ∈ RB
1/p
p,1 (Rd). There exists an optimal atomic decom-

position of this radial distribution

f =
∞∑

j=0

sj,0 aj,0 +
∞∑

j=0

∞∑

k=1

Cd,k∑

�=1

sj,kaj,k,�,

such that

‖ (sj,k)j,k | bp,1,d‖ =
( ∞∑

j=0

( ∞∑

k=0

(1 + k)d−1|sj,k|p
)q/p)1/q

≤ c‖ f | B1/p
p,1 (R

d)‖,
(15)

see (8). Observe, that for all j ≥ 0 there exists a natural number kj such
that

kj2
−j ≤ |x| < (kj + 1)2−j . (16)

Then the main part of f near (|x|, 0, . . . , 0) is given by the function

fM (y) =

∞∑

j=0

sj,kj
aj,kj ,0(y).
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Indeed, f(x) is a finite sum of functions of type

∞∑

j=0

sj,kj+rjaj,kj+rj ,�j+tj (y),

and |rj | and |tj | are uniformly bounded. This follows from properties (a),
(b), (e) and (f) of our sequence of coverings ((Ωj,k,�)k,�)j and the support
conditions fulfiled by the atoms. For convenience we give an estimate of the
main part fM only. Because of (16) and the normalization of the atoms we
obtain

|fM (x)| ≤
∞∑

j=0

|sj,kj
|2−j(s− d

p )

≤
∞∑

j=0

k
1−d
p

j 2−j( 1
p− d

p )
( ∞∑

k=1

kd−1|sj,k|p
)1/p

≤ 2
d−1
p |x| 1−d

p

∞∑

j=0

( ∞∑

k=1

kd−1|sj,k|p
)1/p

≤ c|x| 1−d
p ‖ f | B1/p

p,1 (R
d)‖,

where we used (15) in the last step. The constant c does not depend on x
and f . This proves Theorem 10 for radial Besov spaces.
Step 2. Let A = B. We suppose s = 1/p and q > 1. According to
Lemma 6(i) below there exists a compactly supported function g0 which

belongs to RB
1/p
p,q (R) and is unbounded near the origin. By multiplying

with a smooth cut-off function if necessary we can make the support of this
functions as small as we want. For the given sequence (xj)j we define

g(t) :=
∞∑

j=1

1

max(|xj |, j)α g0(t− |x
j |), t ∈ R,

where one has to choose α > 0 in dependence on p large enough. Obvi-
ously, the function g is unbounded near |xj | and radial. For a proof of

g ∈ RB
1/p
p,q (Rd) we refer to [37].

The remaining parts of the proof can be found in [37].

5.3. The behaviour of radial functions near the origin. Radial func-
tions have also some extra properties near the origin. Under certain re-
strictions on the regularity (in terms of our spaces RAs

p,q(Rd)) the possible
unboundedness near the origin is limited.
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192 WINFRIED SICKEL

5.3.1. Embeddings into L∞(Rd). At first we mention that the embed-
ding relations with respect to L∞(Rd) do not change when we switch from
As

p,q(Rd) to its radial subspace RAs
p,q(Rd).

Lemma 4. (i) The embedding RBs
p,q(Rd) ↪→ L∞(Rd) holds if, and only if,

either s > d/p or s = d/p and q ≤ 1.
(ii) The embedding RF s

p,q(Rd) ↪→ L∞(Rd) holds if, and only if, either s > d/p
or s = d/p and p ≤ 1.

The sufficiency part of the Lemma 4 is classical. Of interest is the ne-
cessity. Here we recall some results of Bourdaud [5], for the special case
Bs

p,p(Rd) see also Triebel [47]. For (α, σ) ∈ R2 we define the extremal
functions

fα,σ(x) := ψ(x)
∣∣log |x|

∣∣α
∣∣∣log

∣∣log |x|
∣∣
∣∣∣
−σ

, x ∈ Rd. (17)

Furthermore we define a set Ut ⊂ R2 as follows:

Ut :=

⎧
⎪⎨
⎪⎩

(α = 0 and σ > 0) or α < 0 if t = 1,

(α = 1− 1
t and σ > 1

t ) or α < 1− 1
t if 1 < t <∞,

(α = 1 and σ ≥ 0) or α < 1 if t =∞,

Lemma 5. (i) Let 0 < p ≤ ∞ and 1 < q ≤ ∞. Then fα,σ belongs to

RB
d/p
p,q (Rd) if, and only if, (α, σ) ∈ Uq.

(ii) Let 1 < p < ∞. Then fα,σ belongs to RF
d/p
p,q (Rd) if, and only if,

(α, σ) ∈ Up.

Hence, unboundedness can only happen in case s ≤ d/p. We split our
considerations into the cases s < d/p and s = d/p.

5.3.2. Controlled unboundedness near the origin in case s < d/p.
Again by making use of the atomic decompositions of radial functions one
can prove the following, see [37].

Theorem 11. Let d ≥ 2 and 0 < p <∞.
(i) Suppose (s, p, q) ∈ U(A) and s < d

p . Then there exists a constant c s.t.

|x| dp−s|f(x)| ≤ c‖ f | As
p,q(Rd)‖ (18)

holds for all 0 < |x| ≤ 1 and all f ∈ RAs
p,q(Rd).
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(ii) Let σp(d) < s < d/p. There exists a constant c > 0 such that for
all x, 0 < |x| < 1, there exists a smooth radial function f ∈ RAs

p,q(Rd),

‖ f | As
p,q(Rd)‖ = 1, s.t.

|x| dp−s|f(x)| ≥ c. (19)

In the following figure we summarize our knowledge.
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Figure 3.

Remark 20. (i) In case of RBs
p,∞(Rd) we have a function which realizes

the extremal behaviour for all |x| < 1 simultaneously. It is well-known, see
e.g. [32, Lem. 2.3.1/1], that the function

f(x) := ψ(x)|x| dp−s, x ∈ Rd,

belongs to RBs
p,∞(Rd), as long as s > σp(d). This function does not belong

to RBs
p,q(Rd), q <∞. Since it is also not contained in RF s

p,q(Rd), 0 < q ≤ ∞
we conclude that in these cases there is no function, which realizes this upper
bound for all x simultaneously. In these cases the function f in (19) has to
depend on x.
(ii) In the literature one can find various types of further inequalities for
radial functions. Many times preference is given to a homogeneous con-
text, see for example the inequality (12). This will be discussed in Sec-
tion 7. Sometimes also decay estimates are proved by replacing on the
right-hand side the norm in the space As

p,q(Rd) by products of norms, e.g.,

‖ f | Lp(Rd)‖1−Θ‖ f | As
p,q(Rd)‖Θ for some Θ ∈ (0, 1), see [26], [27], [31] and

[9]. Here we will not deal with those modifications (improvements).

Finally, we have to investigate s ≤ 1/p and (s, p, q) 	∈ U(A).
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194 WINFRIED SICKEL

Lemma 6. Let d ≥ 2, 0 < p <∞ and 0 < q ≤ ∞. Suppose (s, p, q) 	∈ U(A)
and σp(d) < 1/p. Moreover let σq(d) < 1/p in the F -case. Then there exists
a radial function f ∈ RAs

p,q(Rd), ‖ f | RAs
p,q(Rd)‖ = 1, and a sequence

(xj)j ⊂ Rd \{0} s.t. limj→∞ |xj | = 0 and f is unbounded in a neighbourhood
of all xj.

Remark 21. One can use the same type of counterexamples as used in
proof of Theorem 10.

5.3.3. The behaviour of radial functions near the origin – border-
line cases. Now we turn to the remaining limiting situation. We shall show
that there is also controlled unboundedness near the origin if s = d/p and

RA
d/p
p,q (Rd) 	⊂ L∞(Rd).

Theorem 12. Let d ≥ 2, 0 < p <∞ and suppose s = d/p.
(i) Let 1 < q ≤ ∞. Then there exists constant c s.t.

(− log |x|)−1/q′ |f(x)| ≤ c‖ f | Bd/p
p,q (Rd)‖

holds for all 0 < |x| ≤ 1/2 and all f ∈ RB
d/p
p,q (Rd).

(ii) Let 1 < p <∞. Then there exists constant c s.t.

(− log |x|)−1/p′ |f(x)| ≤ c‖ f | F d/p
p,q (Rd)‖

holds for all 0 < |x| ≤ 1/2 and all f ∈ RF
d/p
p,q (Rd).

Remark 22. Comparing Lemma 6 and Theorem 12 we find the following.
For the case q =∞ in Theorem 12(i) the function f1,0, see (17), realizes the
extremal behaviour. In all other cases there remains a gap of order log log
to some power.

6. Compact embeddings on Rd. Part I

It is elementary to see that an embedding As0
p0,q0(R

d) ↪→ As1
p1,q1(R

d) can not
be compact. To see this one may take such a smooth cut-off function ψ.
This function belongs to all spaces As0

p0,q0(R
d), whatever the parameters are.

Then we define

ψλ(x) := ψ(x− λ) x ∈ Rd, λ ∈ Zd.

Then, by translation invariance of the quasi-norm ‖ · | As0
p0,q0(R

d)‖ it follows

‖ψλ | As0
p0,q0(R

d)‖ = ‖ψ | As0
p0,q0(R

d)‖ <∞.
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Hence, with λ := (4, 0, . . . , 0) and

F := {ψnλ : n ∈ N}

we obtain a bounded subset of As0
p0,q0(R

d). This subset F of As0
p0,q0(R

d) does

not contain a convergent subsequence in As1
p1,q1(R

d) since

‖ψnλ − ψmλ | As1
p1,q1(R

d)‖ " ‖ψnλ | As1
p1,q1(R

d)‖+ ‖ψmλ | As1
p1,q1(R

d)‖
= 2 ‖ψ | As1

p1,q1(R
d)‖ > 0, n 	= m,

where we applied the disjointness of the supports of ψnλ and ψmλ.
The situation changes dramatically when we switch to the radial sub-

spaces. Before we formulate the general result on compactness of embeddings
of radial Besov-Lizorkin-Triebel spaces we treat a special situation with an
elementary proof.

6.1. The compactness of the embedding RH1(Rd) ↪→ Lq(Rd). We are
going to prove

RH1(R) ↪→↪→ Lq(R), 2 < q <

{ 2d
d−2 d > 2,

∞ d = 2.
(20)

Proof. Let (fj)j be a bounded sequence in RH1(R), say

sup
j
‖ fj | H1(R)‖ ≤ 1.

Let

2 ≤ p <

{ 2d
d−2 d > 2,

∞ d = 2.

By Br we denote the ball with radius r and centre in the origin. The em-
bedding H1(Br) ↪→↪→ Lp(Br) is compact for any r > 0. This implies the
existence of a function f ∈ Lloc

p (R) and a subsequence (fj	)� s.t.

(∫

B	

|f(x)− fj	(x)|p dx
)1/p

<
1

�
.

From the continuity of the embedding RH1(Rd) ↪→ Lp(Rd) we derive
‖ fj | Lp(Rd)‖ ≤ C and therefore f ∈ Lp(Rd) and ‖ f | Lp(Rd)‖ ≤ C.
We put Br := {x ∈ R : |x| > r}. Let q be as in (20) and define Θ := 1−2/q.
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Then our decay estimate (13) (recall H1(Rd) = F 1
2,2(Rd) = B1

2,2(Rd) in the
sense of equivalent norms) implies

‖ fj | Lq(B
r)‖ ≤ ‖ fj | L2(B

r)‖1−Θ‖fj | L∞(Br)‖Θ ≤ cr−
(d−1)Θ

2 (21)

Because of the a.e. convergence of a subsequence to f the limit function
has the same decay properties. Therefore, (21) holds with f as well. For
arbitrary r > 0 we find

‖ψ( ·/r)(f − fj	) | Lq(R)‖ → 0 as �→∞.

Furthermore

‖ (1− ψ( ·/r))(f − fj	) | Lq(R)‖ ≤ cr−
(d−1)Θ

2 → 0 as r →∞,

independent of �. This proves the compactness. �
Remark 23. The proof given above is also typical for the general situation.
A few references will be given in Remark 25 below.

6.2. The compactness of the embedding RAs
p,q(Rd) ↪→ Lu(Rd). To

begin with we recall some embedding relations for Besov and Lizorkin-Triebel
spaces.

Proposition 5. (i) The embedding Bs0
p0,q0(R

d) ↪→ Bs1
p1,q1(R

d) holds if, and
only if, p0 ≤ p1 and either

s0 −
d

p0
> s1 −

d

p1
(22)

or

s0 −
d

p0
= s1 −

d

p1
and q0 ≤ q1.

(ii) The embedding F s0
p0,q0(R

d) ↪→ F s1
p1,q1(R

d) holds if, and only if, either

p0 < p1 and s0 − d
p0
≥ s1 − d

p1
holds or p0 = p1 and s0 > s1 or p0 = p1,

s0 = s1 and q0 ≤ q1.

Remark 24. (i) For As
p,q(Rd) the quantity s− d/p is called the associated

differential dimension.
(ii) Proposition 5 can be found in [39]. However, sufficiency of the conditions
is proved in many places.

Now we turn to the question which of these embeddings becomes compact
when switching from As

p,q(Rd) to its radial subspace. Here we have a final
result, originally proved in [35].

kniha_Institute_of_Mathematics_v204   204kniha_Institute_of_Mathematics_v204   204 7.9.2011   9:46:067.9.2011   9:46:06



RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 197

Theorem 13. Let A,A ∈ {B,F}.
(i) Let d ≥ 2. Then the embedding

RAs0
p0,q0(R

d) ↪→ RAs1
p1,q1(R

d)

is compact if, and only if, p0 < p1 and

s0 −
d

p0
> s1 −

d

p1
.

(ii) Let d = 1. Then for all pairs of triples (s0, p0, q0) and (s1, p1, q1) the
space RAs0

p0,q0(R) is not compactly embedded into RAs1
p1,q1(R).

Observe, that the microscopic indices q0 and q1 do not influence the con-
ditions. By means of the elementary embeddings

B0
p,1(Rd) ↪→ Lp(Rd) ↪→ B0

p,∞(Rd)

we immediately obtain the following corollary.

Corollary 3. Let 1 ≤ p1 ≤ ∞.
(i) Let d ≥ 2. Then the embedding

RAs0
p0,q0(R

d) ↪→ Lp1
(Rd)

is compact if, and only if, p0 < p1 and

s0 > d
( 1

p0
− 1

p1

)
.

(ii) Let d = 1. Then for all pairs of triples (s0, p0, q0) and (s1, p1, q1) the
space RAs0

p0,q0(R) is not compactly embedded into Lp1
(R).

Remark 25. (i) In case of first order Sobolev spaces the Corollary 3 (suf-
ficiency part) has been known for a long time, we refer to Berestycki and
Lions [2], Coleman, Glazer and Martin [10], Strauss [43], and Li-
ons [26]. In case of radial Sobolev spaces this result can also be found in the
monograph by Kuzin and Pohozaev [25, 2.8] and in the lecture note by
Hebey [19, 5.3]. Cho and Ozawa [9] discussed this problem for fractional
order of smoothness, but with p = 2. Necessity of these conditions in case
of Sobolev spaces has been observed by Ebihara and Schonbeck [13].
(ii) Quite recently Cwickel and Tintarev [11] gave a different, elegant
and short proof of Corollary 3 restricted to Besov spaces and with some
additional restrictions for p0 and q0.
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7. Regularity, decay and boundedness properties
of radial functions in homogeneous spaces

As we have seen in (12), Subsection 5.1, sometimes decay estimates can be
proved by using homogeneous norms instead of the inhomogeneous ones.
Here in this section we shall investigate this problem in greater detail. For
homogeneous spaces we prefer to start with the Fourier analytic approach.

7.1. Distribution spaces modulo polynomials. General references for
homogeneous Besov and Lizorkin-Triebel spaces are [16], [17], [18], [28], [45].
For convenience of the reader we recall the definition and a few properties
of these spaces.

Let ϕ ∈ C∞0 (Rd) be a radial function such that suppϕ ⊂ {ξ ∈ Rd : 1/4 ≤
|ξ| ≤ 4} and ϕ(ξ) = 1 if 1/2 ≤ |ξ| ≤ 2. Then we define

ϕj(ξ) := ϕ(2−j+1ξ), ξ ∈ Rd, j ∈ Z.

This leads to a specific homogeneous smooth dyadic decomposition of unity
since ∞∑

j=−∞
ϕj(ξ) = 1, ξ 	= 0.

We shall identify tempered distributions modulo polynomials. In fact, we
consider the classes

[f ] := {f + p : p polynomial over Rd}, f ∈ S′(Rd).

Definition 9. (i) Let 0 < p ≤ ∞. Then the homogeneous Besov space

Ḃs
p,q(Rd) is the collection of all classes [f ] such that

‖ [f ] | Ḃs
p,q(Rd)‖ :=

( ∞∑

j=−∞
2jsq‖F−1[ϕj(ξ)Ff(ξ)]( · ) | Lp(Rd)‖q

)1/q

<∞.

(ii) Let 0 < p <∞. Then the homogeneous Lizorkin-Triebel space Ḟ s
p,q(Rd)

is the collection of all classes [f ] such that

‖ [f ] | Ḟ s
p,q(Rd)‖ :=

∥∥∥
( ∞∑

j=−∞
2jsq|F−1[ϕj(ξ)Ff(ξ)]( · )|q

)1/q ∣∣∣ Lp(Rd)
∥∥∥ <∞.

Remark 26. (i) The definition makes sense since

F−1[ϕj F(f + p)] = F−1[ϕj Ff ]
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for all polynomials p, all f ∈ S′(Rd), and all j ∈ Z. Moreover, the spaces

Ḃs
p,q(Rd) and Ḟ s

p,q(Rd) are independent of the resolution of unity up to equiv-
alence of quasi-norms. Furthermore, we always have

∞∑

j=−∞
F−1(ϕjFg) ∈ [f ] ∀g ∈ [f ].

(ii) The spaces Ḃs
p,q(Rd) and Ḟ s

p,q(Rd) are quasi-Banach spaces.

(iii) Let 1 < p < ∞. Define Ḣs
p(Rd) as the collection of all classes [f ] such

that F−1[|ξ|sFf(ξ)]( · ) ∈ Lp(Rd) equipped with the induced norm. Usually

Ḣs
p(Rd) are called homogeneous potential spaces. Then Ḣs

p(Rd) coincides

with Ḟ s
p,2(Rd) in the sense of equivalent norms.

7.2. Radial classes of distributions. Following [14] we use the following
definition of radiality in the homogeneous context.

Definition 10. Let f ∈ S ′(Rd). Then we call the class [f ] radial if [f ]
contains a radial distribution g.

Of some use will be the following simple observation. Let [f ] ∈ Ȧs
p,q(Rd)

be radial. Let g be one of the radial elements in [f ]. Let (ϕj)j be the
smooth, homogeneous, dyadic and radial decomposition of unity, defined in
the previous Subsection 7.1. Then the distribution

σ(g) :=

∞∑

j=−∞
F−1[ϕjFg]

is radial as well, since the Fourier transform of a radial function is radial.
However, the right-hand side does not depend on the particular element g
in [f ]. Hence, we may write

σ([f ]) =

∞∑

j=−∞
F−1[ϕjFh], (23)

where h ∈ [f ] is arbitrary. The mapping [f ] �→ σ([f ]) has some further nice
properties which we are going to recall now.

Some properties of Besov spaces are partly easier described in terms of
Lorentz spaces than in terms of Lebesgue spaces. For a measurable function
f : Rd → C its non-increasing rearrangement is denoted by f∗, i.e.,

f∗(t) := inf
{
λ : |{x ∈ Rd : |f(x)| > λ}| ≤ t

}
, 0 < t <∞.
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Then the Lorentz space Lp,q(Rd) is the collection of all functions f s.t.

‖ f | Lp,q(Rd)‖ :=
{ (∫∞

0
[t1/pf∗(t)]q dt

t

)1/q
if 0 < q <∞,

sup0<t<∞ t1/pf∗(t) if q =∞

is finite. We refer to [1, Chap. 4], [3, 1.3] or [44, 1.18.6] for the basic properties
of these spaces. They represent natural refinements of the Lebesgue spaces
Lp(Rd) in view of the identity Lp(Rd) = Lp,p(Rd). Let C0(Rd) be the space
of all uniformly continuous functions vanishing at infinity.

Lemma 7. Let 0 < p <∞.
(i) Let σp(d) < s < d/p. Then

σ ∈ L(Ḃs
p,q(Rd), Lt,q(Rd)), t :=

d
d
p − s

and

σ ∈ L(Ḟ s
p,q(Rd), Lt(Rd)), t :=

d
d
p − s

(ii) Let s = d/p. Then

σ ∈ L(Ḃd/p
p,1 (R

d), C0(Rd)).

(iii) Let 0 < p ≤ 1 and s = d/p. Then

σ ∈ L(Ḟ d/p
p,q (Rd), C0(Rd)).

Remark 27. (i) Essentially, Lemma 7 is well-known. We refer to Peetre
[28, Thm. 7, Chap. 11, p. 242] for the first part (inhomogeneous case) and
to Bourdaud [4] for the second. Also in [36] we gave a detailed proof.

(ii) The limiting situation s = σp(d) is investigated in Peetre [28,
Thm. 7, Chap. 11, p. 242] and in Vyb́ıral [49].

7.3. Radial subspaces of homogeneous Besov-Lizorkin-Triebel
spaces. Lemma 7 gives us the possibility to describe the subsets of ho-
mogeneous Besov-Lizorkin-Triebel spaces we are interested in, in a much
more transparent way. By σ(Ȧs

p,q(Rd)) we denote the set of all images under
the mapping σ equipped with the quasi-norm

‖σ([f ]) | σ(Ȧs
p,q(Rd))‖ := ‖ [f ] | Ȧs

p,q(Rd)‖.
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Lemma 8. Let 0 < p <∞.
(i) Let σp < s < d/p. Then

σ(RȦs
p,q(Rd)) = Ȧs

p,q(Rd) ∩RLt,∞(Rd), t :=
d

d
p − s

.

(ii) Let s = d/p. Then

σ(RḂ
d/p
p,1 (R

d)) = Ḃ
d/p
p,1 (R

d) ∩RC0(Rd).

(iii) Let 0 < p ≤ 1 and s = d/p. Then

σ(RḞ d/p
p,q (Rd)) = Ḟ d/p

p,q (Rd) ∩RC0(Rd).

Remark 28. (i) It is not difficult to see that Lemma 8 can be supplemented
by

σ(RḂs
p,q(Rd)) = Ḃs

p,q(Rd) ∩RLt(Rd)), t :=
d

d
p − s

, q ≤ t,

and

σ(RḞ s
p,q(Rd)) = Ḟ s

p,q(Rd) ∩RLt(Rd)), t :=
d

d
p − s

, 0 < q ≤ ∞.

(ii) Cho and Ozawa [9] have used the above identity to introduce radial

subspaces of Ḣs(Rd) = Ḃs
2,2(Rd) = Ḟ s

2,2(Rd). The general statement has
been proved in [36].

7.4. Homogeneous versus inhomogeneous spaces. For convenience of
the reader we recall the relations between the homogeneous spaces Ȧs

p,q(Rd)

and their inhomogeneous counterparts As
p,q(Rd). If 0 < p < ∞, 0 < q ≤ ∞

and s > σp, then

As
p,q(Rd) = Lp(Rd) ∩ Ȧs

p,q(Rd) (24)

and
‖ g | As

p,q(Rd)‖ " ‖ g | Lp(Rd)‖+ ‖ [g] | Ȧs
p,q(Rd)‖. (25)

Formula (24) has to be interpreted in the following way:

• If inside the class [f ] ∈ Ȧs
p,q(Rd) is one representative g belonging

to Lp(Rd), then this function g belongs to the inhomogeneous space
As

p,q(Rd) and the quasi-norm equivalence (25) holds.
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202 WINFRIED SICKEL

• On the other hand, if g ∈ As
p,q(Rd) then the associated class [g] belongs

to Ȧs
p,q(Rd) and the quasi-norm equivalence (25) holds.

By means of such an interpretation it is clear that under the given re-
strictions the homogeneous spaces are larger than its inhomogeneous coun-
terparts. Hence, decay and boundedness properties of elements of radial
subspaces of homogeneous spaces can be quite different from those of of
radial subspaces of inhomogeneous spaces. It is instructive to look at the
following family of test functions. For α > 0 and δ ≥ 0 we define

gα,δ(x) := (1 + |x|2)−α/2(log(e + |x|2))−δ (26)

Elementary calculations yield the following.

Lemma 9. Let 1 ≤ p <∞ and 0 < q <∞.
(i) The function gα,δ belongs to Lp,q(Rd) if, and only if, either α > d/p or
α = d/p and δq > 1.

(ii) Let m ∈ N. Then gα,δ ∈ Ẇm
p (Rd) if, and only if, either α+m > d/p or

α+m = d/p and δ > 1/p.

Remark 29. Comparing (i) and (ii) it becomes obvious that the conditions

for belonging to the space Ẇm
p (Rd) are weaker than those for belonging to

Lp(Rd).

These assertions extend in a natural way to fractional order of smoothness.
For a proof we refer to [36].

Proposition 6. Let δ > 0.
(i) We suppose σp,q < s < d/p. Then gα,δ belongs to Ḟ s

p,q(Rd) if either

α > d
p − s (δ ≥ 0 arbitrary) or α = d

p − s and δ > 1/p.

(ii) We suppose σp < s < d/p. Then gα,δ belongs to Ḃs
p,q(Rd) if either

α > d
p − s or α = d

p − s and δ > 1/q.

Remark 30. Let either σp,q < s < d/p (if A = F ) or σp < s < d/p (if
A = B). Then the embeddings

As
p,q(Rd) ↪→

(
Ȧs

p,q(Rd) ∩ Lt,∞(Rd)
)
, t :=

d
d
p − s

,

are strict.

7.5. The regularity of radial functions outside the origin. II. Ho-
mogeneous spaces. Now we turn to the problems we have already dealt
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with in the context of inhomogeneous spaces, see Subsection4.2, namely the
continuity of radial functions outside the origin. The extension to homoge-
neous spaces is more or less obvious. Let [f ] ∈ RAs

p,q(Rd). We use (23). For
any element g of [f ] we have

g = p+ σ([f ]) = p+ f0 + f1, (27)

where p denotes an appropriate polynomial and

f0 :=

−1∑

j=−∞
F−1(ϕjFf) and f1 :=

∞∑

j=0

F−1(ϕjFf). (28)

By classical properties of the Fourier transform (the Fourier transform of a
radial function is radial) and because of the fact, that also the functions ϕj

are radial, both f0 and f1 are radial. The first sum f0 is an entire analytic
function of exponential type, whereas the second sum f1 belongs to the
inhomogeneous space RAs

p,q(Rd). Thus, the local smoothness depends on the
second sum and therefore it is the same as in case of radial inhomogeneous
spaces.

Lemma 10. Let [f ] ∈ RAs0
p0,q0(R

d). Then, for any g ∈ [f ], we have g ∈
As1,loc

p1,q1 (R
d) if f1 ∈ RAs1

p1,q1(R
d).

Now we simply refer to Subsection 4.2. The outcome are the following
corollaries.

Corollary 4. Let d ≥ 2, 0 < p < ∞, and s > 1/p. Let ϕ ∈ C∞0 (Rd) be a

radial function such that 0 	∈ suppϕ. If [f ] ∈ RȦs
p,q(Rd), then for all g ∈ [f ]

we have ϕg ∈ Zs−1/p(Rd).

Some limiting cases are collected in the next corollary.

Corollary 5. Let d ≥ 2 and 0 < p <∞.

(i) If [f ] ∈ RḂ
1/p
p,1 (Rd), then all g ∈ [f ] are continuous outside the origin.

(ii) Let 0 < p ≤ 1. If [f ] ∈ RḞ
1/p
p,∞(Rd), then all g ∈ [f ] are continuous

outside the origin.

Remark 31. Let s = d/p. Then it follows from Lemma 7 that [f ] ∈
RḂ

d/p
p,1 (Rd) implies that all g ∈ [f ] are continuous on Rd. Similarly, if

[f ] ∈ RḞ
d/p
p,∞(Rd), 0 < p ≤ 1, then all g ∈ [f ] are continuous on Rd.
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7.6. Atomic decompositions in homogeneous spaces. Again atomic
decompositions represent the main tool in dealing with decay properties. We
recall a construction of Epperson and Frazier [14]. We will do that with
certain detail but with a different normalization.

Let Jν denote the Bessel function of order ν, ν ≥ −1
2 , defined by

Jν(t) :=

{ (t/2)ν√
πΓ(ν+ 1

2 )

∫ 1

−1
(1− y2)ν−1/2eity dy if ν > − 1

2 ,

(
2
πt

)1/2
cos t if ν = − 1

2 ,
t ∈ R.

Let μν,0 < μν,1 < . . . be the positive zeros of Jν . We put μν,−1 := 0. Then

μν,k = π
(
k +

ν

2

)
+O

( 1

k + 1

)

and

μν,k − μν,k−1 = π +O
( 1

k + 1

)
.

For k = 0, 1, 2, . . . we introduce associated annuli (balls, if k = 0)

Aj,k := {x ∈ Rd : 2−jμν,k−1 ≤ |x| ≤ 2−jμν,k}, j ∈ Z

Ãj,k := {x ∈ Rd : 2−j(μν,k−1 − 1) ≤ |x| ≤ 2−j(μν,k + 1)}, j ∈ Z.

From now on we fix ν = d−2
2 and drop it in notation.

Next we recall the definition of smooth radial atoms from [14].

Definition 11. Let s ∈ R and 0 < p < ∞. A radial function a is called a
smooth radial atom associated to Aj,k if it satisfies the following conditions:

supp a ⊂ Ãj,k, (29)
∫

a(x) dx = 0,

sup
x∈Rd

|Dγa(x)| ≤ cγ2
−j
(
s−|γ|− d

p

)
∀γ ∈ Nd

0. (30)

Here cγ := 1 if |γ| ≤ s+1 and cγ must be independent of j and k if |γ| > s+1.

As usual one has to introduce associated sequence spaces as well. Let
χAj,k

denote the characteristic function of the set Aj,k. Then we define

χ̃
(p)
j,� := 2

jd
p χAj,	

. The announced sequence spaces are then given by

ḃp,q :=
{
(sj,k)j,k : sj,k ∈ C,

‖ (sj,k)j,k | ḃp,q‖ :=
(∑

j∈Z

∥∥∥
∞∑

k=0

sj,kχ̃
(p)
j,k

∣∣∣ Lp(Rd)
∥∥∥
q)1/q

<∞
}
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and

ḟp,q :=
{
(sj,k)j,k : sj,k ∈ C,

‖ (sj,k)j,k | ḟp,q‖ :=
∥∥∥
(∑

j∈Z

∞∑

k=0

∣∣sj,kχ̃(p)
j,k(·)

∣∣q
)1/q ∣∣∣ Lp(Rd)

∥∥∥ <∞
}
.

Again we will use these notation with a in place of b or f if there is no
need to distinguish these cases. Now we are in position to formulate the
result of Epperson and Frazier [14], see Theorem 4.1 and the comments
in Section 5.

Theorem 14. Let either s > σp,q(d) − 1 if A = F or s > σp(d) − 1 if

A = B. For [f ] ∈ RȦs
p,q(Rd) there exist smooth radial atoms aj,k associated

to Aj,k, j ∈ Z, k ∈ N0, and a sequence (sj,k)j,k ∈ ȧp,q, such that

∑

j∈Z

∞∑

k=0

sj,k aj,k ∈ [f ] (31)

and
‖ [f ] | Ȧs

p,q(Rd)‖ " ‖ (sj,k)j,k | ȧp,q‖. (32)

Remark 32. The identity (31) should be interpreted in the following way.
The sequence (fn)n, where

fn =

n∑

j=−n

∞∑

k=0

sj,kaj,k,

converges to some g ∈ [f ] with respect to the quasi-norm in Ȧs
p,q(Rd) as n

tends to infinity, if q <∞, and in S′(Rd)/P if q =∞.

We need another result of Epperson and Frazier, see Theorem 3.1 and
the comments in Section 5 in [14].

Lemma 11. Let either s > σp,q(d) if A = F or s > σp(d) if A = B. Then
there exists a positive constant c s.t. for any sequence (aj,k)j∈Z, k ∈ N0 of
radial functions satisfying the conditions (29), (30) (restricted to values of
γ s.t. |γ| ≤ s+ 1) and any sequence (sj,k)j,k ∈ ȧp,q the inequality

∥∥∥
∞∑

j=−∞

∞∑

k=0

sj,kaj,k

∣∣∣ RȦs
p,q(Rd)

∥∥∥ ≤ c‖ (sj,k)j,k | ȧp,q‖

holds.

Remark 33. Radial subspaces of homogeneous Besov spaces have been
characterized in a wavelet-style by Rauhut [29] and Rauhut and Rösler
[30]. These methods could be used here as well.
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7.3. Decay properties of radial functions – non-limiting cases. Next
we want to deal with the problems already touched in Section 5. Here we
shall investigate the elements of the spaces σ(Ȧs

p,q(Rd)), hence true functions.
Below we shall use the reformulation of this condition given in Lemma 8. In
the first part we deal with smoothness s taken from the interval (1/p, d/p).

Recall, for fixed s and p, the Besov space RḂs
p,∞(Rd) is the largest within

the scale RȦs
p,q(Rd), 0 < q ≤ ∞. Applying essentially the same arguments

as in proof of Theorem 10, see Subsection 5.2, but now with the atomic
decomposition from the previous subsection, we have proved in [36] the fol-
lowing.

Theorem 15. Let d ≥ 2, 0 < p <∞, s > σp(d) and in addition 1/p < s <
d/p.
(i) There exists a constant c > 0 s.t.

|x| dp−s|g(x)| ≤ c‖ [g] | Ḃs
p,∞(Rd)‖ (33)

holds for all g ∈ Ḃs
p,∞(Rd) ∩RLt,∞(Rd), t = d/

(
d
p − s

)
, and all x 	= 0.

(ii) There exist a positive constant c > 0 and a function g ∈ RLt,∞(Rd),

t = d/
(
d
p − s

)
, s.t. [g] ∈ Ḃs

p,∞(Rd) and

|x| dp−s|g(x)| ≥ c‖ [g] | Ḃs
p,∞(Rd)‖

holds for all x 	= 0.

For the spaces Ḃs
p,q(Rd) ∩ RLt,∞(Rd), q < ∞ and Ḟ s

p,q(Rd) ∩ RLt,∞(Rd)
there is only a weaker estimate in (ii).

Lemma 12. Let d, p, q and s be as in Theorem 15. Then there exists a
positive constant c > 0 s.t. for all x 	= 0 there exists a nontrivial function
g ∈ C∞0 (Rd), [g] ∈ RḂs

p,q(Rd), and

|x| dp−s|g(x)| ≥ c‖ [g] | Ḃs
p,q(Rd)‖.

If in addition s > σp,q, then the assertion remains true if we replace B by F .

Remark 34. There are more explicit functions which realize the extremal
behaviour up to logarithmic terms. For example, let

g(x) := ψ(x)|x|s− d
p (− log |x|)−δ+(1+|x|2)−( d

p−s)/2(log(e+|x|2))−δ, x ∈ Rd.

Under the restrictions of Theorem 15 the class [g] belongs to Ḃs
p,∞(Rd) if

δ > 0, see [32, Lemma 2.3.1] and Proposition 6.

There are some more results explaining the sharpness of (33). The first
one is a consequence of the homogeneity of the quasi-norms.
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Lemma 13. Let 0 < p < ∞, 0 < q ≤ ∞, and s ≤ d/p. Let � : (0,∞) →
(0,∞) be continuous. Let us assume that there exists a constant c s.t.

�(|x|)|x| dp−s|σ([f ])(x)| ≤ c‖ [f ] | Ȧs
p,q(Rd)‖ (34)

holds for all [f ] ∈ RȦs
p,q(Rd) and all x 	= 0. Then � must be bounded.

Proof. Let λ > 0. With a function f also f(λ ·) belongs to RȦs
p,q(Rd) or

more exactly, the corresponding classes. Furthermore, we have

‖ [f(λ ·)] | Ȧs
p,q(Rd)‖ " λs−d/p‖ [f ] | Ȧs

p,q(Rd)‖, (35)

see e.g. [28] or [45, Rem. 5.1.3/4]. Clearly σ(f(λ ·)) = σ(f)(λ ·). We apply
the inequality (34) with f(λ ·) and obtain for the particular choice λ = |x|−1

�(|x|)|σ(f)(1, 0, . . . , 0)| ≤ c‖ [f ] | RȦs
p,q(Rd)‖.

Choosing f s.t. σ(f)(1, 0, . . . , 0) 	= 0 we obtain the boundedness of �. �
Remark 25 Comparison with the inhomogeneous situation. The behaviour
near the origin is unchanged by switching from the inhomogeneous to the
larger homogeneous spaces.The decay rate at infinity is different. It is worse
in case of homogeneous spaces in comparison with the smaller inhomoge-
neous spaces.

7.8. Decay of radial functions – limiting cases. In this subsection
we deal with the limiting situations, i.e., s = 1

p and s = d
p . To begin with

we state positive results, first for Besov spaces, second for Lizorkin-Triebel
spaces.

Theorem 16. Let d ≥ 2 and 0 < p <∞.
(i) Let in addition p > 1− 1

d . Then there exists a constant c s.t.

|x| d−1
p |g(x)| ≤ c‖ [g] | Ḃ1/p

p,1 (R
d)‖

holds for all g ∈ Ḃ
1/p
p,1 (Rd) ∩RLt(Rd), t = dp/(d− 1).

(ii) Let s = d/p. There exists a constant c s.t.

|g(x)| ≤ c‖ [g] | Ḃd/p
p,1 (R

d)‖

holds for all g ∈ Ḃ
d/p
p,1 (Rd) ∩RC0(Rd).

Remark 36. Part (ii) follows from Lemma 7.
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Theorem 17. Let d ≥ 2 and 0 < p ≤ 1.
(i) Let in addition p > 1− 1

d . There exists a constant c s.t.

|x| d−1
p |g(x)| ≤ c‖ [g] | Ḟ 1/p

p,∞(Rd)‖

holds for all g ∈ Ḟ
1/p
p,∞(Rd) ∩RLt(Rd), t = dp/(d− 1).

(ii) There exists a constant c s.t.

|g(x)| ≤ c‖ [g] | Ḟ d/p
p,∞(Rd)‖

holds for all g ∈ Ḟ
d/p
p,∞(Rd) ∩RC0(Rd).

Remark 37. (i) Part (ii) follows from Lemma 7.
(ii) Since the inhomogeneous spaces RAs

p,q(Rd) are subspaces of

σ(RȦs
p,q(Rd)), the negative results, obtained in Subsection 5.2, carry over.

(iii) We comment on the case s = d/p. If 1 < q ≤ ∞, then the inho-

mogeneous space RB
d/p
p,q (Rd) contains functions which are unbounded in a

neighbourhood of the origin, see [5]. Hence, if g is such a function, the
class [g] contains elements which are all unbounded in a neighbourhood of

the origin. Similar arguments apply to the cases RF
d/p
p,q (Rd), 1 < p < ∞,

0 < q ≤ ∞.

For convenience of the reader we formulate the consequences for potential
and Sobolev spaces.

Corollary 6. Let 1 < p <∞. Then the following assertions are equivalent.

• There exists a constant c s.t.

|x| dp−s|g(x)| ≤ c‖ [g] | Ḣs
p(Rd)‖ (36)

holds for all g ∈ Ḣs
p(Rd) ∩RLt(Rd), t = d/

(
d
p − s

)
, and all x 	= 0.

• We have 1/p < s < d/p.

Remark 38. (i) The equivalence follows from the identity

Ḣs
p(Rd) = Ḟ s

p,2(Rd),

see Remark 26(iii), Theorem 15 and Corollary 6.
(ii) For p = 2 the inequality (36) has been proved in a simpler way by

Cho and Ozawa [9]. They used tools from Fourier analysis. By explicit

counterexamples they disproved (36) in case σ(RḢ
d/2
2 (Rd)).
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Corollary 7. Let 1 < p < ∞ and m ∈ N. Then the following assertions
are equivalent.

• There exists a constant c s.t.

|x| dp−m|g(x)| ≤ c‖ [g]m | Ẇm
p (Rd)‖ (37)

holds for all g ∈ Ẇm
p (Rd) ∩RLt(Rd), t = d/

(
d
p − s

)
, and all x 	= 0.

• We have 1 ≤ m < d/p.

Remark 39. As proved in Subsection 5.1 the inequality (37) remains true
in case m = p = 1.

8. Compact embeddings on Rd. Part II

We continue our investigations from Section 6. The naive extension of Corol-
lary 3(i), i.e., replacing RAs0

p0,q0(R
d) by σ(RȦs0

p0,q0(R
d), does not lead to

compact embeddings.

Lemma 14. Let d ≥ 2, 1 < p1 <∞ and A ∈ {B,F}. Then σ(RȦs0
p0,q0(R

d))

is never compactly embedded into Lp1
(Rd).

Remark 40. The main idea of the proof consists in the following observa-
tion. On the one hand,

s0 −
d

p0
= 0− d

p1
(38)

is a necessary condition for the embedding σ(RȦs0
p0,q0(R

d)) ↪→ Lp1
(Rd),

see (35). On the other hand, we know RAs0
p0,q0(R

d) ↪→ σ(RȦs0
p0,q0(R

d)) and

hence, the compactness of RAs0
p0,q0(R

d) ↪→ Lp1
(Rd) is another necessary con-

dition. Corollary 3 tells us, that this is in contradiction with (38).

In what follows we shall deal with two less obvious situations where we
still have compact embeddings on unbounded domains.

8.1. Compactness of embeddings into sums of Lebesgue spaces. Let
X and Y be Banach spaces. For simplicity we assume that X,Y ↪→ S ′(Rd).
By X + Y we denote the space of all tempered distributions f , which can
be represented as a sum f = f1 + f2, where f1 ∈ X and f2 ∈ Y . X + Y
becomes a Banach space if equipped with the norm

‖ f | X + Y ‖ := inf
{
‖ f1 | X‖+ ‖ f2 | Y ‖ : f = f1 + f2

}
.

Before we turn to compactness of embeddings we shall investigate continuity
of embeddings.
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Lemma 15. Let d ≥ 2, 0 < p <∞, 1 ≤ p1 ≤ p2 ≤ ∞ and

σp(d) < s <
d

p
.

(i) Then σ(RḞ s
p,q(Rd)) is continuously embedded into Lp1

(Rd) + Lp2
(Rd) if

p ≤ p1 ≤
d

d
p − s

≤ p2 ≤ ∞.

(ii) Then σ(RḂs
p,q(Rd)) is continuously embedded into Lp1

(Rd) +Lp2
(Rd) if

p ≤ p1 <
d

d
p − s

< p2 ≤ ∞.

If in addition q ≤ d
d
p−s

, then p1 = d
d
p−s

and p2 = d
d
p−s

become admissible.

Remark 41. (i) For the existence of the embedding

σ(RȦs
p,q(Rd)) ↪→ Lp1

(Rd) + Lp2
(Rd)

under the condition (39) the relation

p1 ≤
d

d
p − s

≤ p2

is necessary. This can be seen as follows. First, let us assume p2 < d/
(
d
p −s

)
.

Consider our test function gα,δ with α = d/p − s and δ > 1/q. Then

gα,δ ∈ σ(Ḃs
p,q(Rd)), see Proposition 6. Obviously gα,δ 	∈ Lp2

(Rd). Because

of |gα,δ(x)| ≤ 1 for all x this implies gα,δ 	∈ (Lp1
(Rd)+Lp2

(Rd)). Second, we

assume p1 > d/
(
d
p − s

)
. This time we consider the test function fα,δ given

by
fα,δ(x) := ψ(x)|x|−α(log(e + |x|2))−δ

with α = d
p − s and δ > 1/q. Then

fα,δ ∈ Bs
p,q(Rd) ↪→ σ(Ḃs

p,q(Rd)),

see [32, Lemma 2.3.1/1]. Obviously fα,δ 	∈ Lp1
(Rd). Because |fα,δ(x)| ≥ 1

for |x| ≤ 1, this implies fα,δ 	∈ (Lp1
(Rd) + Lp2

(Rd)). This proves the
claim for A = B. In case A = F we apply the elementary embedding
σ(RḂs

p,min(p,q)(R
d)) ↪→ σ(RḞ s

p,q(Rd)) and argue as above.

(ii) The proof uses the decomposition in (27) and is given in [36].

As in case of inhomogeneous radial subspaces, see Corollary 3, in com-
parison with the conditions for continuous embeddings, we have to exclude
some limiting cases and the remaining are compact embeddings, see [36].
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Theorem 18. Let d ≥ 2, 0 < p < ∞, 1 ≤ p1 ≤ p2 ≤ ∞ and s as in (39).

Then σ(RȦs
p,q(Rd)) is compactly embedded into Lp1

(Rd) + Lp2
(Rd) if

p < p1 <
d

d
p − s

< p2 ≤ ∞.

8.2. Compactness of embeddings – exterior domains. We consider
spaces defined on the complement of a ball with center in the origin. For
simplicity we choose Ω := Rd \ {x : |x| < 1}. Let [f ] ∈ RȦs

p,q(Rd). Under
the restrictions of Lemma 7, σ(f) is a radial function. By τ(f) we denote
the restriction of this function to Ω. We define

RȦs
p,q(Ω) :=

{
τ(f) : [f ] ∈ RȦs

p,q(Rd)
}
,

‖ τ(f) | RȦs
p,q(Ω)‖ := inf

{
‖ [g] | RȦs

p,q(Rd)‖ : τ(f) = τ(g)
}
.

These restrictions can be understood in the pointwise sense, since the el-
ements in RȦs

p,q(Rd) are continuous outside the origin, see Corollary 4.

Of course, the restrictions of radial functions in As
p,q(Rd) to Ω belong to

RȦs
p,q(Ω), but this embedding is proper, see Proposition 6. By using a simi-

lar notation for the inhomogeneous spaces a direct consequence of Corollary 3
is the following: the embedding RAs0

p0,q0(Ω) ↪→ Lp1
(Ω) is compact if p0 < p1

and s0 > d
(

1
p0
− 1

p1

)
. For those exterior domains this can be partly improved.

Let C(Rd) be the space of all uniformly continuous functions equipped with
the supremum norm.

Theorem 19. Let d ≥ 2, 0 < p <∞,

max
(
σp(d),

1

p

)
< s <

d

p
and

d
d
p − s

< p1 <∞. (40)

Then RḂs
p,∞(Ω) is compactly embedded into Lp1

(Ω) ∩RC(Ω).

Remark 42. (i) The proof relies on Theorem 15 and the Arzela-Ascoli
Theorem, see [36].
(ii) Let A ∈ {B,F}. From the elementary embeddings for Besov-Lizorkin-
Triebel spaces it follows that under the conditions of Theorem 19 the em-
bedding RȦs

p,q(Ω) ↪→ Lp1
(Ω) ∩RC(Ω) is compact.
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9. Some final comments

There are many open questions in this field. We would like to mention a few
of them.

• A more general type of symmetry leading to compactness of embed-
dings, so-called cylindrical symmetry (sometimes also called block-
radial symmetry) has been investigated in P. L. Lions [26], Ding
Yi [12], Hebey [19], Kuzin and Pohozaev [25, 17.2] in the frame-
work of Sobolev spaces and by Skrzypczak [40] in the general case
of Besov-Lizorkin-Triebel spaces. Which parts of the theory presented
here extend to cylindrical symmetry?

• Cho and Ozawa [9] have introduced function spaces which are suffi-
ciently close to RHs(Rd) s.t. the decay properties near infinity remain
unchanged. They use spherical coordinates r, θ1, . . . , θd−1 and a notion
of regularity with respect the angles θ1, . . . , θd−1 based on the use of
the Laplace-Beltrami operator. Does this method extend to all p?

• Find function spaces which are larger than B
1/p
p,1 (Rd) s.t. the elements

of its radial subspace have the same decay properties then those of

B
1/p
p,1 (Rd). An obvious example is given by

Mp(Rd) :=
(
RBV (Rd), RC(Rd)

)
Θ,∞, Θ = 1− 1

p
, 1 < p <∞,

where ( · , · )Θ,q denotes the real interpolation method and BV (Rd)
denotes the collection of all functions of bounded variation. However,
a simple description of these spaces Mp(Rd) seems to be not known.

• Describe the radial subspaces RAs
p,q(Rd) by differences. The classical

notion of smoothness is connected with derivatives and differences. So
this problem has its roots in the origin of Besov spaces. A first attempt
has been made in [SSV3] but restricted to values of s less than 1 (first
order differences). An extension seems to be less obvious.
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no. 1, 41–54. MR0948279.

[5] G. Bourdaud: A sharpness result for powers of Besov functions. J. Funct. Spaces
Appl. 2 (2004), no. 3, 267–277. Zbl 1071.46025, MR2094590.

[6] M. Bownik and Kwok-Pun Ho: Atomic and molecular decompositions of aniso-
tropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc. 358 (2006), no. 4, 1469–
1510. Zbl 1083.42016, MR2186983.

[7] H.-Q. Bui: Weighted Besov and Triebel spaces: Interpolation by the real method.
Hiroshima Math. J. 12 (1982), no. 3, 581–605. Zbl 0525.46023, MR0676560.

[8] H.-Q. Bui: Characterizations of weighted Besov and Triebel-Lizorkin spaces via
temperatures. J. Funct. Anal. 55 (1984), no. 1, 39–62. Zbl 0638.46029, MR0733032.

[9] Y. Cho and T. Ozawa: Sobolev inequalities with symmetry. Commun. Contemp.
Math. 11 (2009), no. 3, 355–365. Zbl 1184.46035, MR2538202.

[10] S. Coleman, V. Glazer and A. Martin: Action minima among solutions to
a class of Euclidean scalar field equations. Comm. Math. Phys. 58 (1978), no. 2,
211–221. MR0468913.

[11] M. Cwickel and K. Tintarev: On interpolation of cocompact imbeddings. arXiv:
1008.4371v2 (2010), 20 pp.

[12] Ding Yi: Non-radial solutions of semilinear elliptic equation. Math. Acta Sci. 10
(1990), no. 2, 229–239. Zbl 0713.35034,MR1070826.

[13] Y. Ebihara, T. P. Schonbek: On the (non)compactness of the radial Sobolev
spaces. Hiroshima Math. J. 16 (1986), no. 3, 665–669. Zbl 0617.46040, MR0867590.

[14] J. Epperson and M. Frazier: An almost orthogonal radial wavelet expansion for
radial distributions. J. Fourier Anal. Appl. 1 (1995), no. 3, 311–353. Zbl 0887.42031,
MR1353543.

[15] W. Farkas, J. Johnsen and W. Sickel: Traces of anisotropic Besov–Lizorkin–
Triebel spaces – a complete treatment of the borderline cases. Math. Bohemica 125
(2000), no. 1, 1–37. Zbl 0970.46019, MR1752077.

[16] M. Frazier and B. Jawerth: Decomposition of Besov spaces. Indiana Univ. Math.
J. 34 (1985), no. 4, 777–799. Zbl 0551.46018, MR0808825.

[17] M. Frazier and B. Jawerth: A discrete transform and decomposition of distribu-
tion spaces. J. Funct. Anal. 93 (1990), no. 1, 34–170. Zbl 0716.46031, MR1070037.

[18] M. Frazier, B. Jawerth and G. Weiss: Littlewood-Paley theory and the study of
function spaces. CBMS Regional Conference Series in Mathematics, 79. Providence,
RI: Amer. Math. Soc., 1991. Zbl 0757.42006, MR1107300.

[19] E. Hebey: Sobolev spaces on Riemannian Manifolds. Lecture Notes in Mathematics,

1635 Berlin: Springer, 1996. Zbl 0866.58068, MR1481970.

[20] D. Haroske and I. Piotrowska: Atomic decompositions of function spaces with

Muckenhoupt weights, and some relations to fractal geometry. Math. Nachr. 281
(2008), no. 10, 1476–1494. Zbl 1160.46023, MR2454945.

kniha_Institute_of_Mathematics_v221   221kniha_Institute_of_Mathematics_v221   221 7.9.2011   9:46:117.9.2011   9:46:11



214 WINFRIED SICKEL

[21] M. Izuki and Y. Sawano: Wavelet bases in the weighted Besov and Triebel-
Lizorkin spaces with Alocp -weights. J. Approx. Theory 161 (2009), no. 2, 656–673.
Zbl 1183.42037, MR2563074.

[22] B. Jawerth: Some observations on Besov and Lizorkin-Triebel spaces. Math.
Scand. 40 (1977), no. 1, 94–104. Zbl 0358.46023, MR0454618.

[23] B. Jawerth: The trace of Sobolev and Besov spaces if 0 < p < 1. Studia Math. 62
(1978), no. 1, 65–71. Zbl 0423.46022, MR0482141.
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kniha_Institute_of_Mathematics_v222   222kniha_Institute_of_Mathematics_v222   222 7.9.2011   9:46:117.9.2011   9:46:11



RADIAL SUBSPACES OF BESOV-LIZORKIN-TRIEBEL SPACES 215

[39] W. Sickel and H. Triebel: Hölder inequalities and sharp embeddings in function
spaces of Bs

p,q and F s
p,q type. Z. Anal. Anwend. 14 (1995), no. 1, 105–140. Zbl

0820.46030, MR1327495.

[40] L. Skrzypczak: Rotation invariant subspaces of Besov and Triebel-Lizorkin spaces:
compactness of embeddings, smoothness and decay properties. Rev. Mat. Iberoamer-
icana 18 (2002), no. 2, 267–299. Zbl 1036.46028, MR1949829.

[41] E. M. Stein: Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series, 30. Princeton, N.J.: Princeton Univ. Press, 1970. Zbl
0207.13501, MR0290095.

[42] E. M. Stein: Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathe-
matical Series, 43. Princeton, N.J.: Princeton Univ. Press, 1993. Zbl 0821.42001,
MR1232192.

[43] W. A. Strauss: Existence of solitary waves in higher dimensions. Commun. Math.
Phys. 55 (1977), no. 2, 149–162. Zbl 0356.35028,MR0454365.

[44] H. Triebel: Interpolation theory, function spaces, differential operators.North-Hol-
land Mathematical Library, 18. Amsterdam: North-Holland, 1978. Zbl 0387.46032,
MR0503903.

[45] H. Triebel: Theory of function spaces. Monographs in Mathematics, 78. Basel:
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