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Abstract

Solution of a boundary value problem is often realized as the application of the

Galerkin method to the weak formulation of given problem. It is possible to generate

a trial space by means of splines or by means of functions that are not polynomial and

have compact support. We restrict our attention only to RKP shape functions and

compactly supported wavelets. Common features and comparison of approximation

properties of these functions will be studied in the contribution.

1. Introduction

One of the possibilities to solve boundary value problems is the Galerkin method.
Céa’s lemma (1964) says that the error in the Galerkin method depends on how well
the exact solution is approximated by elements of the trial space. There is a lot
of possibilities how to generate such space. For example, it is possible to deal with
compactly supported wavelets or with RKP shape functions. The solving of some
boundary value problems by using wavelet bases can be found in [5], [2] and by using
RKP shape functions for example in [4], [1]. Our aim is to introduce wavelets and
RKP shape functions and compare their properties.

The outline of the next text is as follows. Some basic information on the construc-
tion and properties of the wavelet basis are presented in Section 2. The construction
and properties of the RKP shape functions are described in Section 3. Finally,
a comparision of properties of the wavelets and the RKP shape functions is shown
in Section 4.

2. Wavelets

Wavelets have grown up not only from theoretical mathematical study but also
from practical reasons. The technique of the wavelet transform is used in signal
processing. It is a very effective tool, because it gives possibility to change window
during the analysing of signal (in contrast with the Fourier transform). It allows to
extract information from many different kinds of data, it can help to analyze voice

149



or to compress pictures. It can also serve to analyze variability, to remove noise
or to detect significant moments in the time series that are used in economy. In
numerical mathematics, the wavelet bases can be used by the solution of boundary
values problems, where they provide perfect space and spectral localization. They
combine the advantage of the basis used in the FEM with the advantage of the basis
used in spectral analysis.

Construction of the wavelet system

A function ψ ∈ L2(R) is called the basic wavelet, if the condition of stability

∫

R

|ψ̂(ξ)|2

|ξ|
dξ <∞ (1)

is satisfied.
In this text, we will deal with two types of the basic wavelets – the scaling

function ϕ and the associated wavelet ψ.
It is possible to receive an orthonormal basis in L2(R) by means of the multi-

resolution analysis (MRA). The MRA is an efective but not the only one way to
obtain an orthogonal wavelet system. Each wavelet that quickly decreases to zero
and that is smooth enough can be constructed by it.

In MRA, the spaces Vj ⊂ L2(R) (j ∈ Z) that satisfy

Vj ⊂ Vj+1;
⋂

j∈Z

Vj = {0};
⋃

j∈Z

Vj = L2(R);

∃ϕ ∈ V0 : {ϕ(x− k)}k∈Z is a complete orthogonal set in L2(R); (2)

f ∈ V0 ⇔ f(2jx) ∈ Vj

are constructed.
It follows from the properties given above that there exists the subspace Wj

orthogonal to Vj such that Vj+1 = Vj ⊕Wj . It means that Vj+1 = V0 ⊕W0 ⊕W1 ⊕
. . .⊕Wj . Next, we put

Vj = {ϕj,k}j,k∈Z, where ϕj,k(x) = 2j/2ϕ(2jx− k), (3)

Wj = {ψj,k}j,k∈Z, where ψj,k(x) = 2j/2ψ(2jx− k). (4)

If a boundary value problem is solved numerically, it is suitable to generate the
trial space by wavelets that have compact support. In this case, the scaling function ϕ
and the associated wavelet have to satisfy

ϕ(x) =
D−1
∑

k=0

akϕ1,k(x), ψ(x) =
D−1
∑

k=0

bkϕ1,k(x), where bk = (−1)k a1−k. (5)

Example The class of Daubechies wavelets (including coiflets and symlets) can be
received by the MRA. The compactly supported Daubechies wavelet of order 4 to-
gether with its scaling function are in Figure 1.
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Figure 1: The Daubechies wavelet Db4

Properties of wavelets

1) It holds for wavelets defined by (5) that suppϕ(x) = 〈0, D − 1〉, suppψ =
〈1− D

2
, D
2
〉. (D = 2N for the Daubechies wavelets of order N.)

2) The functions {ϕ0,k}k∈Z , {ψl,k}k∈Z, l=1,...j form an orthonormal basis in Vj+1 ⊂
L2(R). It is possible to express an approximation of a function u ∈ L2(R) by means
of

ũ(x) =
∑

k∈Z

c0,kϕ0,k(x) +
j
∑

l=1

∑

k∈Z

cl,kψl,k(x). (6)

3) We can see from the relation (3) that the functions {ϕ0,k}k∈Z are translation
invariant: ϕ0,k+m(x) = ϕ0,k(x−m).
4) The approximation properties of the MRA are given in the next theorem (see [5]).

Theorem 1. Let {Vj} be the MRA with ϕ ∈ L1(R), ϕ be compactly supported, the
value of the Fourier transform ϕ̂(0) = 1 and L ≥ 1, then the next conditions are
equivalent
(a) The Strang-Fix condition of order L− 1: Function ϕ satisfies

dq

dξq
ϕ̂(2nπ) = 0, n 6= 0, n ∈ Z, q = 0, . . . , L− 1. (7)

(b) The quasi-reproducing condition of order L− 1: Function ϕ satisfies
∑

k∈Z

kqϕ(x− k) = xq + pq−1(x) for all x ∈ R, q = 0, . . . , L− 1. (8)

Here pq−1 is a polynomial that has order less or equal q − 1.
(c) The vanishing moment condition: It holds for the qth moment of the associated
wavelet

Mq(ψ) =
∫

R
xqψ(x) dx = 0 ∀q = 1, . . . , L− 1. (9)

(d) There exist coeficients cj,k, j, k ∈ Z, and constants Cs, such that it holds for all
u ∈ WL,2(R)

‖u−
∑

k∈Z

cj,kϕj,k‖W s,2(R) ≤ Cs2
−j(L−s)|u|WL,2(R) for s = 0, . . . , L− 1. (10)
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Remark The construction of orthogonal wavelet bases on the real line was described
in the previous text. Note that if boundary value problems are solved, it is necessary
to adapt wavelet bases to the interval. Some problems can occur when the wavelets
are used directly as trial functions. For example the introduction of Dirichlet bound-
ary conditions is difficult. Lower order wavelets cannot be employed due to the lack
of regularity. Also the request for orthogonality in (2) is too strong. It appears
better to use Riesz wavelet bases than orthonormal bases given above by solving
BVP’s. Especially the biorthogonal multiwavelets on the basis of splines are used
successfully.

3. RKP-shape functions

Meshless methods were developed to find the solution of boundary value problems
for differential equations that describe practical problems such as large deformation,
crack propagation or moving boundary problems where it is necessary to overmesh
during computation. The fact that meshless methods need no explicitly given mesh
avoids or greatly simplifies this meshing task. The trial space is generated by shape
functions in meshless methods. There is a lot of meshless methods and each of them
constructs the shape functions in a different way. For instance the Reproducing
Kernel Particle Method (RKPM) belongs to meshless methods that are based on
kernel approximation.

Construction of shape functions

Let x1, . . . , xN be particles in 〈a, b〉, w(x) be a weight function (i.e. continuous,
compactly supported function) and p(x) = (p0(x), . . . , ps(x)) be a polynomial basis
of order s (i.e. components pj ∈ P≤s, s ≥ 0.)

The one dimensional RKP shape function Φ
[α]
j (x) of order α, 0 ≤ α ≤ s, which is

associated with the particle xj , is defined by

Φ
[α]
j (x) = α!p

(

x− xj

ρ

)

bT
α(x)w

(

x− xj

ρ

)

∆xj . (11)

Here ρ > 0 is a dilatation parameter, ∆xj is the quadrature weight and vector bα(x)
is the solution of the linear equations

M(x)bT
α(x) =

(

p(α)(0)
)T
, (12)

where M(x) =
∑N

j=1 p
T
(

x−xj

ρ

)

p
(

x−xj

ρ

)

w
(

x−xj

ρ

)

∆xj and p(α)(x) = dα

dxαp(x)

The vector bα(x) is constructed in such a way that the shape functions Φ
[α]
j (x)

reproduce polynomials of order s− α.

If we use (12), (11) and put pβ
(

x−xj

ρ

)

=
(

x−xj

ρ

)β
, 0 ≤ β ≤ s, we can see that

the condition (12) leads to system

N
∑

j=1

(

x− xj

ρ

)β

Φ
[α]
j (x) = α!δβ,α, 0 ≤ α, β ≤ s. (13)

152



Example The system of reproducing RKP shape functions Φ
[0]
3 and Φ

[1]
3 is given in

Figure 2. They are constructed on the interval 〈0, 1〉 for N = 5 equidistant particles,

p(x) = (1, x), w(x) =

{

(1− x2)2 if |x| ≤ 1
0 if |x| > 1

and ρ = 0.3.

Φ
[0]
3 (x)

Φ
[1]
3 (x)

Figure 2: Shape functions

Properties of RKP shape functions

Suppose that RKP shape functions are defined by (11), (12).

1) The continuous version of function Φ
[0]
0 satisfies the condition of stability (1) for

the basic wavelet (see [3]).

2) The support and smoothness of Φ
[0]
j are the same as the support of the given

weight function w.
3) The functions Φ

[0]
j are translation invariant for uniformly distributed particles, i.e.

Φ
[0]
j+k(x) = Φ

[0]
j (x− xk), where xk = kh, k ∈ Z (see [1]).

4) From the conditon (13) one can receive that the shape functions Φ
[0]
j are repro-

ducing of order s i.e. they reproduce polynomials from P≤s exactly (see [3]).

5) It is possible to receive from (13) that
∑N

j=1Φ
[0]
j (x) = 1 and

∑N
j=1Φ

[α]
j (x) = 0. It

means that the shape functions Φ
[α]
j , 0 ≤ α ≤ s, form the partition of unity and an

approximation of a function u ∈ W 1,2(Ω) can be supposed in the form

ũ(x) =
N
∑

j=1

c0,jΦ
[0]
j (x) +

s
∑

α=1

N
∑

j=1

cα,jΦ
[α]
j (x). (14)

6) Because the property ”reproducing order” is a particular case of ”quasi-reproducing
order”, the error of approximation can be determined from the Strang-Fix theorem
(see [1]).

Theorem 2. Let particles {xi} be uniformly distributed, Φ
[0]
j ∈ W q,2(R), q ≥ 0, be

reproducing of order s. Then for each u ∈ W k+1,2(R) there are C, cj ∈ R such that

‖u−
∑

j∈Z

cjΦ
[0]
j ‖W s,2 ≤ C hk+1−s‖u‖W k+1,2 for 0 ≤ s ≤ min{q, k + 1}. (15)
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4. Conclusion

In this contribution the construction of compactly supported wavelet and RKP
shape function systems is described. Then a short overview of properties of these
systems is given. It is possible to say that even though these systems are built in
different ways, they have some common features.

For example: The basic functions Φ
[0]
0 behave similarly as the scaling functions ϕ.

It is possible to obtain the constructed systems from these basic functions using
translation and dilatation. The basic functions are able to approximate polynomials
of the order, which corresponds to the order of reproducing conditions that they
satisfy. The functions ψj,k and Φ

[α]
j , α 6= 0, satisfy the vanishing moment condition.

It is possible to carry out the estimate of approximation errors using the Strang-Fix
theorem.

However, it is possible to find some differences between wavelet bases and RKP
shape functions that are used for solution of BVP’s. For example, biorhotgonal
wavelet bases are Riesz bases, but the sequence {Φ

[α]
I (x), α ≥ 0} is only a frame.

Wavelet basis provides the possibility to compute effectively coefficients of a stiffness
matrix, but the RKP shape functions do not offer any similar advantage. On the
other hand, it is possible to construct RKP shape functions that have the desired
order of continuity and that are not linked to any explicitly given mesh.
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