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Abstract

The coefficients of the greatest common divisor of two polynomials f and g (GCD(f, g))
can be obtained from the Sylvester subresultant matrix Sj(f, g) transformed to lower
triangular form, where 1 ≤ j ≤ d and d = deg(GCD(f, g)) needs to be computed.

Firstly, it is supposed that the coefficients of polynomials are given exactly. Trans-
formations of Sj(f, g) for an arbitrary allowable j are in details described and an
algorithm for the calculation of the GCD(f, g) is formulated. If inexact polynomials
are given, then an approximate greatest common divisor (AGCD) is introduced. The
considered techniques for an AGCD computations are shortly discussed and numeri-
cally compared in the presented paper.

1. Introduction

Consider the polynomials f and g,

f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ am, a0 × am 6= 0, (1)

g(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x+ bn, b0 × bn 6= 0. (2)

In the first part of this paper it is assumed that the coefficients are given exactly,
all calculations are performed symbolically and m ≥ n. Let us put f0 := f , f1 := g.
The polynomials

fr(x) = qr(x)fr+1(x) + fr+2(x), deg(fr+2) < deg(fr+1),

for r = 0, 1, 2, . . . , fr 6= 0 ∀r ≤ k

in the successive divisions of Euclid’s algorithm are well defined, [1, 7, 15]. If fk+1 = 0
then fk is the GCD of f0 and f1, which is written as fk = GCD(f0, f1) = GCD(f, g).
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The Sylvester matrix S(f, g) ∈ R
(m+n)×(m+n), [1, 3, 4, 7, 12, 13, 15], is the matrix

S(f, g) =















a0 b0
a1 a0 b1 b0
· a1 · · b1 ·
· · · a0 · · · b0
am · · a1 bn · · b1

am · · bn · ·
· · · ·

am bn















.

︸ ︷︷ ︸

n columns
︸ ︷︷ ︸

m columns

Let j be an integer, 1 ≤ j ≤ n. The jth Sylvester subresultant matrix Sj(f, g) ∈
R

(m+n−j+1)×(m+n−2j+2) is formed by deleting the last (j−1) rows, and the last (j−1)
columns of the coefficients of f and g of S(f, g). The vector ei denotes the ith column
of the identity r× r matrix Ir, and the matrix Ei,j(σ) = Ir − σeie

T
j , where σ ∈ R, is

the elementary triangular matrix. It is lower and upper triangular matrix for i ≥ j
and i ≤ j, respectively.

Transformations of the Sylvester subresultant matrix Sj(f, g) that correspond
to the first stage of Euclid’s algorithm can be expressed by multiplying Sj(f, g) by
the elementary triangular matrices. The polynomial f2 arises from the first stage.
For illustration, let us consider the Sylvester resultant matrix S2 := S2(f, g) for the
polynomials f and g of degrees m = 6 and n = 3.

The first step in the transformation of S2 consists of the subtraction of the third
and fourth column, multiplied by σ1 = a0/b0, from the first and second column,
respectively. This is implemented in such a way that the matrix S2 is multiplied
successively by the matrices E3,1(σ1) and E4,2(σ1) yielding S

(1)
2 := S2E3,1(σ1)E4,2(σ1),

S
(1)
2 =


















0 b0

a
(1)
1 0 b1 b0

a
(1)
2 a

(1)
1 b2 b1 b0

a
(1)
3 a

(1)
2 b3 b2 b1 b0

a
(1)
4 a

(1)
3 b3 b2 b1 b0

a
(1)
5 a

(1)
4 b3 b2 b1

a
(1)
6 a

(1)
5 b3 b2

a
(1)
6 b3


















,

where

a
(1)
i =







ai − (a0/b0)
︸ ︷︷ ︸

σ1

bi i = 1, 2, 3

ai i = 4, 5, 6.

Analogously, the numbers σ2, σ3
and σ4 can be constructed such that

the firs two columns of the matrix

S
(4)
2 , where successively

S
(2)
2 = S

(1)
2 E4,1(σ2)E5,2(σ2), S

(3)
2 = S

(2)
2 E5,1(σ3)E6,2(σ3), S

(4)
2 = S

(3)
2 E6,1(σ4)E7,2(σ4),

contain the elements 0, 0, 0, 0, a
(4)
4 , a

(4)
5 , a

(4)
6

1 at the locations of

0, a
(1)
1 , a

(1)
2 , a

(1)
3 , a

(1)
4 , a

(1)
5 ,a

(1)
6 of S

(1)
2 .

1The upper index, e.g. a
(4)
4 , specifies that the coefficients belong to the matrix S

(4)
2 .
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Then the permutation matrix P = [e3, e4, e5, e6, e7, e1, e2] ∈ R
7×7 applied to S

(4)
2 gives

S
(4)
2 P =


















b0 | 0 0 0
b1 b0 | 0 0 0
b2 b1 b0 | 0 0 0
b3 b2 b1 b0 | 0 0 0
− − − − + − − −

0 b3 b2 b1 | b0 a
(4)
4 0

0 0 b3 b2 | b1 a
(4)
5 a

(4)
4

0 0 0 b3 | b2 a
(4)
6 a

(4)
5

0 0 0 0 | b3 0 a
(4)
6


















=





L1,1 | 0
− + −
L2,1 | L2,2





where L2,2 = S2(g, f2) and f2(x) = a
(4)
4 x2+a

(4)
5 x+a

(4)
6 is the first nonzero polynomial

produced by Euclid’s algorithm if f2 6= 0. In this case the matrix L1,1 is square, lower
triangular and nonsingular.

The following four cases may happen:

1. f2 = 0, i.e. a
(4)
4 = a

(4)
5 = a

(4)
6 = 0. Then g divides f and the matrix S

(4)
2 P

without any block structure is lower triangular matrix having two last zero columns.

2. a
(4)
4 6= 0 and f2 divides g. Then elementary matri-

ces applied to L2,2 transform L2,2 to the matrix S
(4)
2,⋆ .

Hence, the matrices S
(4)
2 and S2 are rank deficient of

order 1. In this case n2 := deg(GCD(f, g)) = 2.

S
(4)
2,⋆ =








a
(4)
4 0 0

a
(4)
5 a

(4)
4 0

a
(4)
6 a

(4)
5 0

0 a
(4)
6 0








3. a
(4)
4 6= 0 and f2 does not divide g. Then elementary matrices applied to L2,2

transform L2,2 to the lower triangular matrix having linearly independent columns..

4. a
(4)
4 = 0 but f2 6= 0. Then the matrix S

(4)
2 (f, g) can be transformed into the

form

S̃
(4)
2 =


















b0 | 0 0
b1 b0 | 0 0
b2 b1 b0 | 0 0
b3 b2 b1 b0 | 0 0
− − − − − + − −
0 b3 b2 b1 b0 | 0 0

0 0 b3 b2 b1 | a
(4)
5 0

0 0 0 b3 b2 | a
(4)
6 a

(4)
5

0 0 0 0 b3 | 0 a
(4)
6


















and no other polynomials can be calculated in Euclid’s algorithm in the last two
cases. The matrices S

(4)
2 (f, g) and S2 have full column rank.
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In general, if the Sylvester subresultant Sj(f, g) has full column rank, we have to
go back to Sj−1(f, g), Sj−2(f, g), . . . as long as the rank deficient matrix appears. If
S1(f, g) = S(f, g) has full column rank, then f and g are coprime.
Just presented example is generalized in the following section. The results are origi-
nal.

2. Matrix formulation for the transformation of the Sylvester
subresultant matrix

Let us denote f0 := f and f1 := g, where f and g are defined in (1) and (2),
respectively. Denote n0 := m = deg(f0), n1 := n = deg(f1).

Let us assume that the matrices Sj(f0, f1), Sj(f1, f2), . . . can be constructed by
Euclid’s algorithm for an index j. According to our previous example, the following
theorem can be easily seen. Let us write shortly Sj := Sj(f0, f1).

Theorem 1. Let f0 and f1 be polynomials of degrees n0 and n1, respectively, n0 ≥
n1 ≥ 1. It is assumed that Euclid’s algorithm yields the polynomials f2, f3, . . . , fk,
fk+1 = 0 of degrees n2, n3, . . . , nk. Therefore fk = GCD(f0, f1). Denote d := nk and
fk(x) = v0x

d+v1x
d−1+ · · ·+vd−1x+vd. Consider an integer j ∈ {1, 2, . . . , n}. Then

the following statements hold:

1) There exists a nonsingular matrix Qj of order n0 + n1 − 2j + 2 such that the
matrix SjQj has the following block structure. We distinguish two cases:

a) If j ≤ d, then

SjQj =





L1,1 | 0
− + −
L2,1 | L2,2



 ,

where L1,1 is a square lower triangular matrix with non-zero diagonal elements
and L2,2 is a rectangular matrix with (nk−1 + nk − 2j + 2) columns if f2 6= 0.
Contrariwise if f2 = 0 then g divides f and the matrix SjQj is lower triangular
matrix having last n1 − j + 1 zero columns. In the following let f2 6= 0. Then
the matrix L2,2 has the following form:

(i) case when j ≤ d

L2,2 =













v0 | 0 . 0
v1 v0 | 0 . 0
. v1 . | 0 . 0
vd . . v0 | 0 . 0

vd . v1 | 0 . 0
. . | 0 . 0

vd | 0 . 0













︸ ︷︷ ︸

nk−1 − j + 1
︸ ︷︷ ︸

nk − j + 1

(ii) special case when j = d

L2,2 =













v0 | 0
v1 v0 | 0
. v1 . | 0
vd . . v0 | 0

vd . v1 | 0
. . | 0

vd | 0













︸ ︷︷ ︸

nk−1 − nk + 1
︸︷︷︸

1
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Moreover, the presented scheme of matrices (i) and (ii) shows that

rank(Sj) = rank(QjSj) = n0 + n1 − 2(j − 1)− (nk − j + 1)

= n0 + n1 − j − nk + 1

and the nonzero columns of the matrix L2,2 contain the coefficients of the poly-
nomial fk. In case j = d = nk, the matrix Sd is rank deficient of order 1.

b) If j > d, then SjQj is a lower triangular matrix with linearly independent
columns. Hence, SjQj and therefore Sj has full column rank.

2) If nk = 0, then the matrix S1(f0, f1) having full rank n0 + n1 is only considered,
fk = v0 6= 0 and L2,2 = v0Ink−1

.

3) The next equivalences follow from the statements formulated above:

rank(Sd(f0, f1)) = n0 + n1 − 2d+ 1 ⇔ deg (GCD(f0, f1)) = d,

rank(Sj(f0, f1)) < n0 + n1 − 2j + 1 ⇔ deg(GCD(f0, f1)) > j.

Just presented overview shows the relation between the rank(Sj) and the degree
of GCD(f0, f1). Hence if the polynomials f0 and f1 are known exactly and the
computations are performed symbolically, then the transformation of the Sylvester
subresultant matrix Sj(f0, f1), j ≤ d, to the lower triangular form with the resultant
matrix L2,2 yields the coefficients of the GCD(f0, f1).

3. Calculation of GCD

Consider the polynomials f and g in (1) and (2) of degrees m = deg(f0) and n =
deg(f1), and put f0 = f and f1 = g. Let h be the exact GCD(f0, f1) with d = deg(h).
There exist two polynomials w0 and w1 so that

fi = hwi for i = 0, 1, where deg(w0) = m− d, deg(w1) = n− d.

Hence h = f0/w0 = f1/w1 ⇒ f0w1 − f1w0 = 0. Using Cauchy matrices, we can
rewrite the last equality in the form

Cn−d+1(f0)~w1 − Cm−d+1(f1)~w0 = [Cn−d+1(f0), Cm−d+1(f1)]
︸ ︷︷ ︸

Sd

[
~w1

−~w0

]

= ~0, (3)

where the vectors of coefficients of the polynomials w1, w0 are denoted by ~w1 and ~w0.
The matrix Sd = [Cn−d+1, Cm−d+1] ∈ R

(m+n−d+1)×(m+n−2d+2) is rank deficient of or-
der 1. The solution of (3) is the right singular vector corresponding to σmin(Sd(f0, f1))
and can be computed by the Gauss-Newton iteration, see for example [2, 3, 8]. The
coefficients of h are calculated as the least square solution of the equation

Cd+1(w1)~h = ~f1 or Cd+1(w0)~h = ~f0.
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Figure 1: In the following graphs the smallest singular values of the Sylvester sub-
resultant matrices S9, S8, S7 and S6, left-hand side, and the singular values of S7,
right-hand side, are drawn.

Let us demonstrate the mentioned theory on the following polynomials

f0(x) = (x− 1.2)4(x+ 2)5(x− 0.5)4, f1(x) = (x− 1.4)2(x+ 2)3(x− 0.5)4 (4)

of degrees deg(f0) = 13 and deg(f1) = 9. Their GCD is the polynomial GCD(f0, f1) =
h(x) = (x+2)3(x−0.5)4 = x7+4x6+1.5x5−7.5x4−0.9375x3+6.375x2−3.25x+0.5
of degree deg(h) = d = 7. Theorem 1 says that S7 is the first rank deficient matrix
in the sequence S9, S8, S7. For illustration see Figure 1.

The matrix S7 is the first rank deficient matrix with the smallest singular value
7.1678−14

10 and the corresponding right singular vector

[−0.1090, 0.3051,−0.2135, 0.1090,−0.0872,−0.7147, 0.9204, 0.9790,−2.1086, 0.9037]T.

The LS solution of C8( ~w1)~h = ~f1 yields the coefficients of the GCD(f0, f1) =
~h = [1, 4, 1.5,−7, 5,−0.9375, 6.375,−3.25, 0.5]T . The LS solution of the system

C8( ~−w0)~h = ~f0 yields the same vector ~h = [1, 4, 1.5,−7, 5,−0.9375, 6.375,−3.25, 0.5]T .

4. Approximate greatest common divisor

It was assumed that the coefficients of polynomials are given exactly and the
calculations are performed symbolically. But the calculation of the GCD is unstable
in a computer environment and cannot be almost used. Moreover, numerical compu-
tation of the GCD is an ill-posed problem. Therefore the concept of an approximate
greatest common divisor (AGCD) was introduced [3, 6, 13, 14].

Definition. Let f and g be two polynomials of degrees m and n, respectively, and let
0 < θ << 1 be a positive number. The degree of an approximate greatest common
divisor with respect to θ is the maximum integer j ≤ min(m,n) for which there exist
polynomials δf and δg with max(‖δf‖, ‖δg‖) ≤ θ and deg(GCD(f + δf, g+ δg) = j.
The approximate greatest common divisor denoted by AGCD(f, g) is defined by
AGCD(f, g) = GCD(f + δf, g + δg).
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Algorithms for the calculation of δf and δg are well known. However they are out
of scope of this paper and cannot be analysed in this paper. Let us only mention
the Structured Total Least Norm (STLN) method (see, for example, [10, 5, 13]) for
the construction of a structured low rank approximation of the full rank Sylvester
matrix in the AGCD approach.

For demonstration, let us again consider the polynomials from Section 3 and let
us denote them by f̂ and ĝ. Their exact GCD is the polynomial

GCD(f̂ , ĝ) = x7 + 4x6 + 1.5x5 + 7.5x4 − 0.9375x3 + 6.375x2 − 3.25x+ 0.5.

Let f and g be inexact forms of f̂ and ĝ, i.e. the polynomials f̂ and ĝ with a noise
expressed by a signal-to-noise ratio equal to 106 added to their coefficients. The
polynomials that arise from the application of the STLN method are denoted by f̃
and g̃. The schema of this process is as follows.

{

f̂(x)
ĝ(x)

}
perturbation
−−−− →

{
f(x)
g(x)

}
STLN

−−−− →

{

f̃(x)
g̃(x)

}

The polynomials f and g are theoretically coprime and the procedure that follows
from Theorem 1 fails in the presence of greater noise. However, we can see from
the table below that the coefficients of GCD(f̂ , ĝ) and GCD(f̃ , g̃) of the polynomials
computed by STLN are almost identical.

GCD(f̂ , ĝ) GCD(f̃ , g̃)

x7 1 1
x6 4 3.999978
x5 1.5 1.499947
x4 −7.5 −7.500006
x3 −0.9375 −0.937463
x2 6.375 6.375001
x1 −3.25 −3.250011
x0 0.5 0.499999
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