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SCALABLE ALGORITHMS FOR CONTACT PROBLEMS WITH
GEOMETRICAL AND MATERIAL NON-LINEARITIES∗

Jǐŕı Dobiáš, Svatopluk Pták, Zdeněk Dostál, Vı́t Vondrák

1. Introduction

Contact modelling is still a challenging problem of non-linear computational me-
chanics. The complexity of such problems is related to the a priori unknown contact
interface and contact tractions. Their evaluations have to be part of the solution. In
addition, the solution across the contact interface is non-smooth.

FETI (Finite Element Tearing and Interconnecting) method [1] belongs to the
class of non-overlapping spatial domain decomposition method. Its key concept stems
from the idea that the spatial sub-domains, into which the domain is partitioned,
are ‘glued’ by Lagrange multipliers. After eliminating the primal variables, which
are displacements, the original problem is reduced to a small, relatively well condi-
tioned, typically equality constrained quadratic programming problem that is solved
iteratively. The CPU time that is necessary for both the elimination and iterations
can be reduced nearly proportionally to the number of the processors, so that the
algorithm exhibits parallel scalability. Observing that the equality constraints may
be used to define so called ‘natural coarse grid’, Farhat, Mandel and Roux modified
the basic FETI algorithm so that they were able to prove its numerical scalability,
i.e. asymptotically linear complexity.

If the FETI method is applied to the contact problems, the same methodology
can be used to prescribe conditions of non-penetration between bodies.

After brief theoretical introduction, this paper is concerned with demonstration
of scalability of a new variant of the FETI domain decomposition method, called
TFETI (Total FETI) method, and application of the classic FETI method to the
solution to contact problems with other non-linearities.

2. Theoretical background

Let us consider a contact problem between two solid deformable bodies. This is
basically the boundary value problem known from the solid mechanics. The problem
is depicted in Figure 1. Two bodies are denoted by (Ω1, Ω2) ⊂ Rn, n = 2 or n = 3
where n stands for number of spatial dimensions. Γ stands for boundaries of the
bodies that are sub-divided into three disjoint parts. The Dirichlet and Neumann
boundary conditions are prescribed on the parts Γu and Γf , respectively. The third
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type of the boundary condition, Γc, is defined along the contact interface. The math-
ematical description of the problem is given by the governing equations expressing
equilibrium conditions of the system, along with the boundary conditions.
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Fig. 1: Contact problem.

The result of application of the classic FETI method to the system of bodies
from Figure 1 is depicted in Figure 2. The sub-domain Ω1 is decomposed into two
sub-domains with fictitious interface between them.

The fundamental idea of the FETI method is that the compatibility between sub-
domains is ensured by means of the Lagrange multipliers or forces in this context.
In Figure 2, λE denotes the forces along the fictitious interface and λI stands for the
forces generated by contact.

The original FETI method assumes that Dirichlet boundary conditions are in-
herited from the original problem, which is shown in Figure 2. This fact implies that
the defect of the stiffness matrices of individual sub-domains may vary from zero,
for the sub-domains with enough Dirichlet conditions, to the maximum (6 for 3D
solid mechanics problems and 3 for 2D ones) in the case of sub-domains exhibiting
some rigid body modes. General solution to such systems requires computation of a
generalised inverse and a basis of the null spaces of the underlying singular matrices.
The problem is that the magnitudes of the defects are difficult to obtain because this
computation is disposed to the round off errors [2].

To circumvent the problem, Dostál came up with a novel solution [3]. His idea
was to release all prescribed Dirichlet boundary conditions and enforce them by the
Lagrange multipliers as it is shown in Figure 3. The effect of the procedure on
the stiffness matrices of the sub-domains is that their defects are the same and its
magnitude is known beforehand.

The mathematical description of the FETI method can be found, e.g., in [4] and
the TFETI method in [3].
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Fig. 2: FETI method.
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Fig. 3: TFETI method.

Application of the FETI and TFETI methods to the contact problems converts
the original problem to the quadratic programming one with simple bounds and
equality constraints. This problem is further transformed by Semi-Monotonic Aug-
mented Lagrangians with Bound and Equality constraints (SMALBE) method to
the sequence of simply bounded quadratic programming problems. These auxiliary
problems may be solved efficiently by the Modified Proportioning with Reduced Gra-
dient Projection (MPRGP) method which is described in more details in [5]. It was
proved in [6] that application of combination of both these methods to solution to
contact problems benefit the numerical and parallel scalability.

We extended the FETI and TFETI method to problems with the geometric and
material non-linearities. The above mentioned approach is directly applicable to
solution to the contact problems, but with other conditions linear, i.e. for linear
elasticity with small displacements and rotations, and frictionless contact. Any ad-
ditional non-linearity necessitates employment of the nested iteration strategy, where
the outer loop is concerned with the material and geometric non-linear effects, con-
tact geometry update, and equilibrium iterations.

3. Numerical experiments

We shall show results of three sets of numerical experiments we carried out. The
first one documents numerical scalability of the FETI and TFETI methods. The
second case is concerned with contact problem of two cylinders, and the third one
with contact problem of the pin in hole with small clearance.

Numerical experiments in the second and third cases were carried out with our
general purpose finite element package PMD [7].
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3.1. Poisson’s problem

Consider a Poisson’s problem 4u = 1 in Ω, where Ω = (0, 1)× (0, 1). Dirich-
let boundary conditions are prescribed along one edge of the domain, and Neumann
conditions along remaining edges. This scalar boundary value problem can be inter-
preted as the deformation perpendicular to the domain for a thin membrane under
lateral pressure, while the physical meaning of the right hand side is the applied pres-
sure divided by membrane tension per unit length. We used bilinear quadrilateral
elements for discretisation of the problem.

We carried out a series of computations with changing decomposition parame-
ter H and discretisation parameter h. The results are summarised in Table 1.

H h prim. dual FETI dual TFETI CG steps CG steps
FETI TFETI

1/2 1/4 36 11 17 7 4
1/4 1/8 144 63 75 12 5
1/8 1/16 576 287 311 13 7
1/16 1/32 2304 1215 1263 15 11
1/2 1/8 100 19 29 9 9
1/4 1/16 400 111 131 16 12
1/8 1/32 1600 511 551 18 16
1/16 1/64 6400 2175 2255 20 21
1/2 1/16 324 35 53 14 9
1/4 1/32 1296 207 243 22 14
1/8 1/64 5184 959 1031 24 20
1/16 1/128 20736 4095 4239 23 23

Tab. 1: Scalability of FETI and TFETI.

The table also shows numbers of primal variables and numbers of dual variables
for both FETI and TFETI. We observe from the last two columns that performances
of FETI and TFETI are close and that both algorithms exhibit the numerical scal-
ability as can be seen from number of the conjugate gradient (CG) steps.

Figure 4 shows the case corresponding to the first line in Table 1, i.e. H = 1/2
and h = 1/4. There are four sub-domains there, each with nine primal variables
so that the total number is 36. The FETI dual variables are explicitly depicted.
The number of the TFETI dual variables is obtained as the sum of the FETI dual
variables and the Dirichlet boundary conditions, which are indicated by triangles.

3.2. Contact problem of two cylinders

Consider contact of two cylinders with parallel axes. The diameter of the upper
cylinder Ru = 1 m and of the lower one Rl = ∞. In spite of the fact that it is
a 2D problem, it is modelled with 3D continuum trilinear elements with two layers
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Fig. 4: Decomposition and discretisation of the domain.

of them along the axis of symmetry of the upper cylinder. Nevertheless, it is clear
that number of layers is irrelevant. The boundary conditions are imposed in such
a way that from the physical viewpoint it is the plane strain problem. The model
consists of 8904 elements and 12765 nodes. The upper cylinder is loaded by 40 MN/m
along the upper line of the upper cylinder.

Figure 5 shows solution to linearly elastic and linearly geometric problem in terms
of the deformed mesh. The material properties are as follows: Young’s modulus
E = 2.0× 1011 Pa and Poisson’s ratio ν = 0.3.

The second problem was computed on the same mesh with the same loading,
but we considered linearly–elastic–perfectly–plastic material with yield stress σY =
800 MPa. We also considered the geometric non-linearity, i.e. large displacements
and finite rotations. The deformed mesh is depicted in Figure 6.

Fig. 5: Deformed mesh, linear problem.
Fig. 6: Deformed mesh, non-linear
problem.
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3.3. Pin-in-hole contact problem

Consider problem of a circular pin in circular hole with small clearance. The
radius of the hole is 1 m and the pin has its radius by 1% smaller. Again, the 2D
problem is modelled with 3D trilinear elements. The model consists of 15844 elements
and 28828 nodes. The pin is loaded along its centre line by 133 MN/m. The geometric
non-linearity was considered. The material properties are the same as in the previous
case.

Figure 7 shows von Mises stress distribution on the deformed mesh.

Fig. 7: Deformed mesh, non-linear problem, von Mises stress.

4. Conclusion

A new variant of the original FETI domain decomposition method was presented.
It is called TFETI and its basic idea, in comparison with FETI, consists in replace-
ment of Dirichlet boundary conditions by Lagrange multipliers or forces in this con-
text. It is of great importance from the computational point of view, because the
defect of stiffness matrices of all sub-domains is the same and its magnitude is known
beforehand. Numerical experiments show that algorithm stemming from TFETI ex-
hibits the numerical scalability. We also show results of solution to contact problems
by the FETI method.

72



References

[1] Ch. Farhat, F.-X. Roux: A method of finite element tearing and interconnecting
and its parallel solution algorithm. Int. J. Numer. Methods Engng. 32, 1991,
1205–1227.
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