Previous |  Up |  Next

Article

References:
[1] M. Altman: (A series of papers on nonlinear evolution equations). Nonlin. Anal., Theory, Meth., Appl. 8 (1984), No. 5, pp. 457-499. MR 0741601
[2] E. B. Bykhovsky: Solution to the mixed problem for Maxwell equations in case of ideally conductive boundary. Vest. Leningrad. Univ., ser. Mat., Mech., Astr. 13 (1957), pp. 50-66 (Russian).
[3] W. Craig: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations. Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X (1983), pp. 125-168. MR 0713113 | Zbl 0518.35057
[4] B. D. Craven M. Z. Nashed: Generalized implicit function theorems when the derivative has no bounded inverse. Nonlin. Anal., Theory, Meth., Appl. 6 (1982), pp. 375-387. MR 0654813
[5] G. Duvaut J.-L. Lions: Les inéquations en mécanique et en physique. Dunod, Paris 1972. MR 0464857
[6] M. R. Hestenes: Extension of the range of a differentiable function. Duke Math. J. 8 (1941), pp. 183-192. MR 0003434 | Zbl 0024.38602
17] L. Hörmander: The boundary problems of physical geodesy. Arch. Rat. Mech. Anal. 62 (1976), pp. 1-52. MR 0602181
[8] S. Klainerman: Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33 (1980), p. 43-101. MR 0544044 | Zbl 0405.35056
[9] P. Krejčí: Periodic vibrations of the electromagnetic field in ferromagnetic media. Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1984 (Czech).
[10] P. Krejčí: Hard implicit function theorem and small periodic solutions to partial differential equations. Comm. Math. Univ. Carolinae 25 (3), 1984, pp. 519-536. MR 0775567
[11] O. А. Ladyzhenskaya V. А. Solonnikov: On the linearization principle and invariant manifolds for problems in magnetohydrodynamics. In "Boundary value problems of mathematical physics and related problems of function theory 7.". Zap. Nautch. Sem. LOMI 38 (1973), pp. 46-93 (Russian). MR 0377310
[12] O. A. Ladyzhenskaya N. N. Uraltseva: Linear and quasilinear equations of elliptic type. "Nauka", Moscow 1973 (Russian). MR 0509265
[13] A. Matsumura: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation. Publ. R.I.M.S., Kyotov Univ., 13 (1977), pp. 349-379. MR 0470507 | Zbl 0371.35030
[14] A. Milani: Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain. Ann. Mat. Рurа Appl. (4) 131 (1982), pp. 233 - 254. MR 0681565 | Zbl 0498.35077
[15] J. Moser: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. 47 (1961), pp. 1824-1831. MR 0132859 | Zbl 0104.30503
[16] J. Moser: A rapidly-convergent iteration method and non-linear differential equations. Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265-315 and 499-535. Zbl 0174.47801
[17] J. Nash: The embedding problem for Riemannian manifolds. Ann. of Math. 63 (1956), pp. 20-63. MR 0075639
[18] L. Nirenberg: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 115-162. MR 0109940 | Zbl 0088.07601
[19] Y. Niwa: Existence of global solutions for nonlinear wave equations. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), pp. 391-394. MR 0694942 | Zbl 0548.35078
[20] H. Petzeltová: Application of Moser's method to a certain type of evolution equations. Czech. Math. J. 33 (1983), pp. 427-434. MR 0718925 | Zbl 0547.35081
[21] G. Prouse: Su alcuni problemi connessi con la risoluzione delle equazioni di Maxwell. Rend. Sem. Mat. Fis. Milano 44 (1974), pp. 95-118. MR 0411370
[22] P. H. Rabinowitz: Periodic solutions of nonlinear hyperbolic partial differential equations II. Comm. Pure Appl. Math. 22 (1969), pp. 15-39. MR 0236504 | Zbl 0157.17301
[23] J. T. Schwartz: On Nash's implicit functional theorem. Comm. Pure Appl. Math. 13 (1960), pp. 509-530. MR 0114144 | Zbl 0178.51002
[24] J. Shatah: Global existence of small solutions to nonlinear evolution equations. J. Diff. Eq. (46) (1982), pp. 409-425. MR 0681231 | Zbl 0518.35046
[25] Y. Shibata: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funkc. Ekv. 25 (1982), pp. 303-345. MR 0707564
[26] Y. Shibata: On the global existence of classical solutions of second-order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain. Tsukuba J. Math. 7 (1983), pp. 1-68. MR 0703667 | Zbl 0524.35071
[27] J. A. Stratton: Electromagnetic theory. Mc. Graw - Hill Book Co., Inc., New York 1941.
Partner of
EuDML logo