Previous |  Up |  Next

Article

References:
[1] A. S. Besicovitch: On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points. Proc. London Math. Soc., 32: 1-9, 1931.
[2] K. J. Falconer: The Geometry of Fractal Sets. Cambridge Univ. Press, Cambridge, 1985. MR 0867284 | Zbl 0587.28004
[3] H. Federer: Geometric Measure Theory. Springer-Verlag, New York, 1969. MR 0257325 | Zbl 0176.00801
[4] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel, 1984. MR 0775682 | Zbl 0545.49018
[5] R. Henstock: Theory of Integration. Butterworth, London, 1963. MR 0158047 | Zbl 0154.05001
[6] E. J. Howard: Analyticity of almost everywhere differentiable functions. Proc. American Math. Soc., to appear. MR 1027093 | Zbl 0705.30001
[7] J. Jarník, J. Kurzweil: A nonabsoluteIy convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J., 35: 116-139, 1985. MR 0779340
[8] J. Jarník, J. Kurzweil: A new and more powerful concept of the $PU$-integral. Czechoslovak Math. J., 38: 8-48, 1988. MR 0925939
[9] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J., 82: 418-446, 1957. MR 0111875 | Zbl 0090.30002
[10] J. Kurzweil, J. Jarník: The $PU$-integral: its definition and some basic properties. In New integrals, Lecture Notes in Math. 1419, pages 66-81, Springer-Verlag, New York, 1990. MR 1051921
[11] W. F. Pfeffer: The Gauss-Green theorem. Advances in Mathematics, to appear. MR 0995997 | Zbl 1089.26006
[12] W. F. Pfeffer: A Riemann type definition of a variational integral. To appear. MR 1072090 | Zbl 0749.26006
[13] W. F. Pfeffer: A Volterra type derivative of the Lebesgue integral. To appear. MR 1135079 | Zbl 0789.28005
[14] W. F. Pfeffer: The multidimensional fundamental theorem of calculus. J. Australian Math. Soc., 43: 143-170, 1987. MR 0896622 | Zbl 0638.26011
[15] W. Riidin: Real and Complex Analysis. McGraw-Hill, New York, 1987.
[16] 5. Saks: Theory of the Integral. Dover, New York, 1964. MR 0167578
[17] W. L. C. Sargent: On the integrability of a product. J. London Math. Soc., 23: 28-34, 1948. MR 0026113 | Zbl 0031.29201
[18] A. I. Volpert: The spaces $BV$ and quasilinear equations. Math. USSR-Sbornik, 2: 225-267, 1967. MR 0216338
[19] W. P. Ziemer: Weakly Differentiable Functions. Springer-Verlag, New York, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo