Previous |  Up |  Next


periodic autoregression; vague prior density; innovation process; changing variances; simulated series; real data
Methods for estimating parameters and testing hypotheses in a periodic autoregression are investigated in the paper. The parameters of the model are supposed to be random variables with a vague prior density. The innovation process can have either constant or periodically changing variances. Theoretical results are demonstrated on two simulated series and on two sets of real data.
[1] J. Anděl: The Statistical Analysis of Time Series. SNTL, Prague 1976 (in Czech).
[2] J. Anděl: Mathematical Statistics. SNTL, Prague, 1978 (in Czech).
[3] G. E. P. Box G. M. Jenkins: Time Series Analysis, Forecasting and Control. Holden Day, San Francisco, 1970. MR 0272138
[4] G. E. P. Box G. C. Tiao: Intervention analysis with applications to economic and environmental problems. J. Amer. Statist. Assoc. 70 (1975), 70-79. DOI 10.1080/01621459.1975.10480264 | MR 0365957
[5] W. P. Cleveland G. C. Tiao: Modeling seasonal time series. Rev. Economic Appliquée 32 (1979), 107-129.
[6] E. G. Gladyshev: Periodically correlated random sequences. Soviet Math. 2 (1961), 385-388. Zbl 0212.21401
[7] E. G. Gladyshev: Periodically and almost periodically correlated random processes with continuous time parameter. Theory Prob. Appl. 8 (1983), 173-177.
[8] J. Janko: Statistical Tables. NČSAV, Prague, 1958 (in Czech). MR 0150924
[9] N. L. Johnson S. Kotz: Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York, 1972. MR 0418337
[10] R. H. Jones W. M. Brelsford: Time series with periodic structure. Biometrika 54 (1967), 403-408. DOI 10.1093/biomet/54.3-4.403 | MR 0223041
[11] H. J. Newton: Using periodic autoregression for multiple spectral estimation. Technometrics 24 (1982), 109-116. DOI 10.1080/00401706.1982.10487731 | MR 0655574
[12] M. Pagano: On periodic and multiple autoregression. Ann. Statist. 6 (1978), 1310-1317. DOI 10.1214/aos/1176344376 | MR 0523765
[13] C. G. Tiao M. R. Grupe: Hidden periodic autoregressive-moving average models in time series data. Biometrika 67 (1980), 365-373. MR 0581732
[14] A. Zellner: An Introduction to Bayesian Inference in Econometrics. Wiley, New York, 1971. MR 0433791 | Zbl 0246.62098
Partner of
EuDML logo