Previous |  Up |  Next

Article

Keywords:
Greechie diagram; finite orthomodular lattice; maximal Boolean subalgebra
Summary:
A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda$-regular, if each atom is a member of just $\lambda$ blocks. We estimate the minimal number of blocks of $\lambda$-regular orthomodular lattices to be lower than of equal to $\lambda^2$ regardless of $k$.
References:
[1] M. Dichtl: Astroids and pastings. Algebra Universalis 18 (1984), 380-385. DOI 10.1007/BF01203371 | MR 0745498 | Zbl 0546.06007
[2] R. J. Greechie: Orthomodular lattices admitting no states. J. Combinatorial Theory 10 (1971), 119-132. DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[3] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1984. MR 0716496 | Zbl 0538.06009
[4] E. Köhler: Orthomodulare Verbände rnit Regularitätsbedingungen. J. of Geometry 119 (1982), 130-145. DOI 10.1007/BF01930874 | MR 0695705
[5] M. Navara V. Rogalewicz: The pasting constructions for Orthomodular posets. Submitted for publication.
[6] V. Rogalewicz: Any orthomodular poset is a pasting of Boolean algebras. Comment. Math. Univ. Carol. 29 (1988), 557-558. MR 0972837 | Zbl 0659.06006
Partner of
EuDML logo