Previous |  Up |  Next

Article

Keywords:
Poisson point process; asymptotically uniform distributions; weak convergence; variation distance; rate of convergence; Poisson hypothesis testing; distance method; quadrat count method; oscillating point patterns; isotropic Gaussian oscillations
Summary:
Oscillating point patterns are point processes derived from a locally finite set in a finite dimensional space by i.i.d. random oscillation of individual points. An upper and lower bound for the variation distance of the oscillating point pattern from the limit stationary Poisson process is established. As a consequence, the true order of the convergence rate in variation norm for the special case of isotropic Gaussian oscillations applied to the regular cubic net is found. To illustrate these theoretical results, simulated planar structures are compared with the Poisson point process by the quadrat count and distance methods.
References:
[1] A. D. Barbour: Stein's method and Poisson Process convergence. J. Appl. Prob. 25A (1988), special volume, 175-184. DOI 10.2307/3214155 | MR 0974580 | Zbl 0661.60034
[2] S. Brown P. Holgate: The thinned plantation. Biometrika 61 (1974), 253-262. DOI 10.1093/biomet/61.2.253 | MR 0370747
[3] P. J. Diggle: Robust density estimation using distance methods. Biometrika 62 (1975), 39-48. DOI 10.1093/biomet/62.1.39 | MR 0381100 | Zbl 0296.62030
[4] P. J. Diggle: Statistical Analysis of Point Processes. Academic Press, London, 1983. MR 0743593
[5] P. Holgate: The distance from a random point to the nearest point of a closely packed lattice. Biometrika 52 (1965), 261-263. DOI 10.1093/biomet/52.1-2.261 | MR 0208633
[6] O. Kallenberg: Random Measures. Academic Press, London, 1983. MR 0818219 | Zbl 0544.60053
[7] K. Matthes J. Kerstan J. Mecke: Infinitely Divisible Point Processes. J. Wiley & Sons, Chichester, 1978. MR 0517931
[8] O. Persson: Distance methods. Studia Forestalia Suecica 15 (1964), 1-68.
[9] I. Saxl J. Rataj: Distances of spherical contact in lattices of figures and lattice of figures with faults. In: Geometrical problems of image processing. Research in informatics. Vol. 4. (U. Eckhardt, A. Hübler, W. Nagel and G. Werner, ed.), Akademie-Verlag, Berlin, 1991, pp. 179-184. MR 1111702
[10] C. Stein: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. 6th Berkeley Symp. Math. Statist. Prob. 2 (1970), 583-602. MR 0402873
[11] D. Stoyan W. S. Kendall J. Mecke: Stochastic Geometry and Its Applications. Akademie-Verlag, Berlin, 1987. MR 0879119
Partner of
EuDML logo