Previous |  Up |  Next


Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
[1] Barbu V.: Optimal Control of Variational Inequalities. Research Notes in Math., vol. 100, Pitman, Boston, 1984. MR 0742624 | Zbl 0696.49021
[2] Browder F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. MR 0445124
[3] Cesari L.: Optimization-Theory and Applications. Springer-Verlag, New York, 1983. MR 0688142 | Zbl 0506.49001
[4] Delahaye J.-P., Denel J.: The continuities of the point to set maps: Definitions and equivalences. Math. Programming Study 10 (1979), 8-12.
[5] Levin V.: Borel sections of many-valued maps. Siberian Math. Journal 19 (1978), 434-438. MR 0501769
[6] Lions J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. SpringerVerlag, New York, 1971. MR 0271512 | Zbl 0203.09001
[7] Raitum U.E.: On optimal control problems for linear elliptic equations. Soviet. Math. Doklady 20 (1979), 129-132. MR 0520593
[8] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem. Journ. Funct. Analysis 17 (1974), 112-129. MR 0374364
[9] Zeidler E.: Nonlinear Functional Analysis and Applications II. Springer-Verlag, Berlin, 1990.
[10] Zolezzi T.: Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche. Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173. MR 0308891
Partner of
EuDML logo