Title: | Decay of solutions of some degenerate hyperbolic equations of Kirchhoff type (English) |

Author: | Szomolay, Barbara |

Language: | English |

Journal: | Commentationes Mathematicae Universitatis Carolinae |

ISSN: | 0010-2628 (print) |

ISSN: | 1213-7243 (online) |

Volume: | 44 |

Issue: | 1 |

Year: | 2003 |

Pages: | 71-84 |

. | |

Category: | math |

. | |

Summary: | In this paper we study the asymptotic behavior of solutions to the damped, nonlinear vibration equation with self-interaction $$ \ddot{u}= - \gamma \dot{u} + m(\|\nabla u\|^2) \Delta u - \delta |u|^{\alpha }u + f, $$ which is known as degenerate if $m(\cdot )\ge 0$, and non-degenerate if $m(\cdot )\ge m_0 > 0$. We would like to point out that, to the author's knowledge, exponential decay for this type of equations has been studied just for the special cases of $\alpha $. Our aim is to extend the validity of previous results in [5] to $\alpha \ge 0 $ both to the degenerate and non-degenerate cases of $m$. We extend our results to equations with $ \Delta^2$. |

Keyword: | asymptotic behavior of solutions |

Keyword: | hyperbolic PDE of degenerate type |

MSC: | 35B40 |

MSC: | 35L20 |

MSC: | 35L70 |

MSC: | 35L80 |

MSC: | 45K05 |

MSC: | 74H45 |

idZBL: | Zbl 1098.35033 |

idMR: | MR2045846 |

. | |

Date available: | 2009-01-08T19:27:27Z |

Last updated: | 2012-04-30 |

Stable URL: | http://hdl.handle.net/10338.dmlcz/119368 |

. | |

Reference: | [1] Aassila M.: Some remarks on a second order evolution equation.Electron. J. Diff. Equations, Vol. 1998 (1998), No. 18, pp.1-6. Zbl 0902.35073, MR 1629704 |

Reference: | [2] Aassila M.: Decay estimates for a quasilinear wave equation of Kirchhoff type.Adv. Math. Sci. Appl. 9 1 (1999), 371-381. Zbl 0939.35028, MR 1690380 |

Reference: | [3] Aassila M.: Uniform stabilization of solutions to a quasilinear wave equation with damping and source terms.Comment. Math. Univ. Carolinae 40.2 (1999), 223-226. MR 1732643 |

Reference: | [4] Dix J.G., Torrejón R.M.: A quasilinear integrodifferential equation of hyperbolic type.Differential Integral Equations 6 (1993), 2 431-447. MR 1195392 |

Reference: | [5] Dix J.G.: Decay of solutions of a degenerate hyperbolic equation.Electron. J. Diff. Equations, Vol. 1998 (1998), No. 21, pp.1-10. Zbl 0911.35075, MR 1637075 |

Reference: | [6] Matsuyama T., Ikehata R.: Energy decay for the wave equations II: global existence and decay of solutions.J. Fac. Sci. Univ. Tokio, Sect. IA, Math. 38 (1991), 239-250. |

. |

Files | Size | Format | View |
---|---|---|---|

CommentatMathUnivCarolRetro_44-2003-1_6.pdf | 235.2Kb | application/pdf |
View/ |