Previous |  Up |  Next

Article

Title: On the analysis of periodic linear systems (English)
Author: Tornambè, Antonio
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 6
Year: 1996
Pages: 625-644
.
Category: math
.
MSC: 49N20
MSC: 93C15
idZBL: Zbl 1043.93523
idMR: MR1438110
.
Date available: 2009-09-24T19:06:13Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125364
.
Reference: [1] M. Araki, K. Yamamoto: Multivariable multirate sampled-data systems: state space description, transfer characteristics, and Nyquist criterion.IEEE Trans. Automat. Control AC-31 (1986), 145-154. MR 0824909
Reference: [2] S. Bittanti: Deterministic and stochastic linear periodic systems.In: Time Series and Linear Systems (S. Bittanti, ed.), Springer-Verlag, Berlin 1986, pp. 141-182. MR 0897824
Reference: [3] S. Bittanti, P. Bolzern: Discrete-time linear periodic systems: gramian and modal criteria for reachability and controllability.Internat. J. Control 41 (1985), 909-928. Zbl 0566.93006, MR 0792917
Reference: [4] R. W. Brockett: Finite Dimensional Linear Systems.Wiley, New York 1970. Zbl 0216.27401
Reference: [5] C. T. Chen: Linear System Theory and Design.Holt, Rinehart and Winston, New York 1984.
Reference: [6] P. Colaneri: Zero-error regulation of discrete-time linear periodic systems.Systems Control Lett. 15 (1990), 2, 161-167. Zbl 0712.93047, MR 1068922
Reference: [7] G. Conte A. M. Perdon, S. Longhi: Invertibility and inversion of linear periodic systems.In: Preprints of the 11th IFAC World Congress, Vol. 2, Tallin 1990, pp. 241-244. MR 1166036
Reference: [8] G. Conte A. M. Perdon, S. Longhi: Zero structure at infinity of linear periodic systems.Circuits Systems Signal Process. 10 (1991), 1, 91-100. MR 1086948
Reference: [9] D. S. Evans: Finite-dimensional realizations of discrete-time weighting patterns.SIAM J. Appl. Math. 22 (1972), 45-67. Zbl 0242.93024, MR 0378915
Reference: [10] M. Fjeld: Optimal control of multivariable periodic processes.Automatica 5 (1969), 497-506. Zbl 0204.46902
Reference: [11] O. M. Grasselli: A canonical decomposition of linear periodic discrete-time systems.Internat. J. Control 40 (1984), 1, 201-214. Zbl 0546.93010, MR 0750419
Reference: [12] O. M. Grasselli: Dead-beat observers of reduced order for linear periodic discrete-time systems with inaccessible inputs.Internat. J. Control 40 (1984), 731-745. Zbl 0547.93030
Reference: [13] O. M. Grasselli, F. Lampariello: Dead-beat control of linear periodic discrete-time systems.Internat. J. Control 33 (1981), 1091-1106. Zbl 0464.93056, MR 0624173
Reference: [14] O. M. Grasselli, S. Longhi: Disturbance localization with dead-beat control for linear periodic discrete-time systems.Internat. J. Control 44 (1986), 5, 1319-1347. Zbl 0602.93027, MR 0858932
Reference: [15] O. M. Grasselli, S. Longhi: Output dead-beat controllers and function dead-beat observers for linear periodic discrete-time systems.Internat. J. Control 43 (1986), 2, 517-537. Zbl 0583.93044, MR 0825659
Reference: [16] O. M. Grasselli, S. Longhi: Disturbance localization by measurement feedback for linear periodic discrete-time systems.Automatica 24 (1988), 3, 375-385. Zbl 0653.93033, MR 0947377
Reference: [17] O. M. Grasselli, S. Longhi: Pole placement for non-reachable periodic discrete-time systems.Math. Control Signals Systems 4 (1991), 439-455. MR 1128264
Reference: [18] O. M. Grasselli, S. Longhi: Robust tracking and regulation of linear periodic discrete-time systems.Internat. J. Control 54 (1991), 3, 613-633. Zbl 0728.93065, MR 1117838
Reference: [19] O. M. Grasselli, S. Longhi: Block decoupling with stability of linear periodic systems.J. Math. Systems Estimation Control 3 (1993), 4, 427-458. Zbl 0785.93062, MR 1318606
Reference: [20] O. M. Grasselli, S. Longhi: Linear function dead-beat observers with disturbance localization for linear periodic discrete-time systems.Internat. J. Control 45 (1987), 5, 1603-1627. Zbl 0622.93042, MR 0890402
Reference: [21] O. M. Grasselli, S. Longhi: Zeros and poles of linear periodic multivariable discrete-time systems.Circuits Systems Signal Process. 7 (1988), 3, 361-380. Zbl 0662.93015, MR 0962108
Reference: [22] O. M. Grasselli, S. Longhi: Finite zero structure of linear periodic discrete-time systems.Internat. J. Systems Sci. 22 (1991), 10, 1785-1806. Zbl 0743.93047, MR 1128912
Reference: [23] O. M. Grasselli, S. Longhi: The geometric approach for linear periodic discrete-time systems.Linear Algebra Appl. 158 (1991), 27-60. Zbl 0758.93044, MR 1126434
Reference: [24] J. Hale: Theory of Functional Differential Equations.Springer-Verlag, New York 1977. Zbl 0352.34001, MR 0508721
Reference: [25] M. Kono: Eigenvalue assignment in linear periodic discrete-time systems.Internat. J. Control 32 (1980), 149-158. Zbl 0443.93044, MR 0580197
Reference: [26] M. Kono T. Suzuki, T. Morishita: Block decoupling problem of linear $\omega$-periodic discrete-time systems.IEEE Trans. Automat. Control 35 (1990), 1262-1265. MR 1074896
Reference: [27] S. Longhi A. M. Perdon, G. Conte: Geometric and algebraic structure at infinity of discrete-time linear periodic systems.Linear Algebra Appl. 122/123/124 (1989), 245-271. MR 1019990
Reference: [28] R. A. Meyer, C. S. Burrus: A unified analysis of multirate and periodically time-varying digital filters.IEEE Trans. Circuits and Systems 22 (1975), 162-168. MR 0392090
Reference: [29] C. Nikias: A general realization scheme of periodically time-varying digital filters.IEEE Trans. Circuits and Systems 32 (1985), 204-207.
Reference: [30] B. Park, E. I. Verriest: Canonical forms on discrete linear periodically time-varying systems and a control application.In: Proc. of the 28th IEEE CDC, Tampa 1989, pp. 1220-1225. MR 1038997
Reference: [31] J. A. Richards: Analysis of Periodically Time-varying Systems.Springer-Verlag, Berlin 1983. Zbl 0503.34002
Reference: [32] E. I. Verriest: The operational transfer function and parametrization of N-periodic systems.In: Proc. of the 27th IEEE CDC, Austin 1988, 1994-1999.
Reference: [33] J. Vlach K. Singhal, M. Vlach: Computer oriented formulation of equations and analysis of switched-capacitor networks.IEEE Trans. Circuits and Systems 31 (1984), 753-765.
Reference: [34] L. Zheng: Discrete-time adaptive control for periodically time-varying systems.In: Proc. of the IFAC Symp. on Adaptive Systems in Control and Signal Processing, Lund 1986, pp. 131-135.
.

Files

Files Size Format View
Kybernetika_32-1996-6_9.pdf 1.450Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo