Previous |  Up |  Next

Article

Keywords:
commutativity theorems; Jacobson radicals; nilpotent elements; periodic rings; torsion-free rings
Summary:
Suppose that $R$ is an associative ring with identity $1$, $J(R)$ the Jacobson radical of $R$, and $N(R)$ the set of nilpotent elements of $R$. Let $m \ge 1$ be a fixed positive integer and $R$ an $m$-torsion-free ring with identity $1$. The main result of the present paper asserts that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m] = 0$ for all $x,y \in R \setminus J(R)$ and (ii) $[(xy)^m + y^mx^m, x] = 0 = [(yx)^m + x^my^m, x]$, for all $x,y \in R \setminus J(R)$. This result is also valid if (i) and (ii) are replaced by (i)$^{\prime }$ $[x^m,y^m] = 0$ for all $x,y \in R \setminus N(R)$ and (ii)$^{\prime }$ $[(xy)^m + y^m x^m, x] = 0 = [(yx)^m + x^m y^m, x]$ for all $x,y \in R\backslash N(R) $. Other similar commutativity theorems are also discussed.
References:
[1] H. A. S.  Abujabal, H. E. Bell, M. S. Khan and M. A. Khan: Commutativity of semiprime rings with power constraints. Studia Sci. Math. Hungar. 30 (1995), 183–187. MR 1353595
[2] H.  Abu-Khuzam: A commutativity theorem for periodic rings. Math. Japon. 32 (1987), 1–3. MR 0886192 | Zbl 0609.16020
[3] H.  Abu-Khuzam and A.  Yaqub: Commutativity of rings satisfying some polynomial constraints. Acta Math. Hungar. 67 (1995), 207–217. DOI 10.1007/BF01874332 | MR 1315805
[4] H.  Abu-Khuzam, H. E.  Bell and A.  Yaqub: Commutativity of rings satisfying certain polynomial identities. Bull. Austral. Math. Soc. 44 (1991), 63–69. DOI 10.1017/S0004972700029464 | MR 1120394
[5] H. E.  Bell: Some commutativity results for periodic rings. Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. DOI 10.1007/BF01896791 | MR 0419535 | Zbl 0335.16035
[6] H. E.  Bell: A commutativity study for periodic rings. Pacific J.  Math. 70 (1977), 29–36. DOI 10.2140/pjm.1977.70.29 | MR 0480637 | Zbl 0336.16034
[7] H. E.  Bell: On rings with commutativity powers. Math. Japon. 24 (1979), 473–478. MR 0557482
[8] I. N.  Herstein: Power maps in rings. Michigan Math.  J. 8 (1961), 29–32. DOI 10.1307/mmj/1028998511 | MR 0118741 | Zbl 0096.25701
[9] I. N.  Herstein: A commutativity theorem. J.  Algebra 38 (1976), 112–118. DOI 10.1016/0021-8693(76)90248-9 | MR 0396687 | Zbl 0323.16014
[10] Y.  Hirano, M.  Hongon and H.  Tominaga: Commutativity theorems for certain rings. Math.  J. Okayama Univ. 22 (1980), 65–72. MR 0573674
[11] M.  Hongan and H.  Tominaga: Some commutativity theorems for semiprime rings. Hokkaido Math.  J. 10 (1981), 271–277. MR 0662304
[12] N.  Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Publ., Providence, 1964.
[13] T. P.  Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon 27 (1982), 267–268. MR 0655230 | Zbl 0481.16013
[14] W. K.  Nicholson and A.  Yaqub: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419–423. DOI 10.4153/CMB-1979-055-9 | MR 0563755
Partner of
EuDML logo