Previous |  Up |  Next

Article

Title: The dual group of a dense subgroup (English)
Author: Comfort, W. W.
Author: Raczkowski, S. U.
Author: Trigos-Arrieta, F. Javier
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 509-533
Summary lang: English
.
Category: math
.
Summary: Throughout this abstract, $G$ is a topological Abelian group and $\widehat{G}$ is the space of continuous homomorphisms from $G$ into the circle group $\mathbb{T}$ in the compact-open topology. A dense subgroup $D$ of $G$ is said to determine $G$ if the (necessarily continuous) surjective isomorphism $\widehat{G}\twoheadrightarrow \widehat{D}$ given by $h\mapsto h\big |D$ is a homeomorphism, and $G$ is determined if each dense subgroup of $G$ determines $G$. The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these. 1. There are (many) nonmetrizable, noncompact, determined groups. 2. If the dense subgroup $D_i$ determines $G_i$ with $G_i$ compact, then $\oplus _iD_i$ determines $\Pi _i G_i$. In particular, if each $G_i$ is compact then $\oplus _i G_i$ determines $\Pi _i G_i$. 3. Let $G$ be a locally bounded group and let $G^+$ denote $G$ with its Bohr topology. Then $G$ is determined if and only if ${G^+}$ is determined. 4. Let $\mathop {\mathrm non}({\mathcal N})$ be the least cardinal $\kappa $ such that some $X \subseteq {\mathbb{T}}$ of cardinality $\kappa $ has positive outer measure. No compact $G$ with $w(G)\ge \mathop {\mathrm non}({\mathcal N})$ is determined; thus if $\mathop {\mathrm non}({\mathcal N})=\aleph _1$ (in particular if CH holds), an infinite compact group $G$ is determined if and only if $w(G)=\omega $. Question. Is there in ZFC a cardinal $\kappa $ such that a compact group $G$ is determined if and only if $w(G)<\kappa $? Is $\kappa =\mathop {\mathrm non}({\mathcal N})$? $\kappa =\aleph _1$? (English)
Keyword: Bohr compactification
Keyword: Bohr topology
Keyword: character
Keyword: character group
Keyword: Außenhofer-Chasco Theorem
Keyword: compact-open topology
Keyword: dense subgroup
Keyword: determined group
Keyword: duality
Keyword: metrizable group
Keyword: reflexive group
Keyword: reflective group
MSC: 03E35
MSC: 03E50
MSC: 22A05
MSC: 22A10
MSC: 22B99
MSC: 22C05
MSC: 43A40
MSC: 54D30
MSC: 54E35
MSC: 54H11
idZBL: Zbl 1080.22500
idMR: MR2059270
.
Date available: 2009-09-24T11:15:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127907
.
Reference: [1] I.  Amemiya and Y. Kōmura: Über nicht-vollständige Montelräme.Math. Ann. 177 (1968), 273–277. MR 0232182, 10.1007/BF01350719
Reference: [2] L. Außenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.PhD. thesis, Universität Tübingen, 1998. MR 1736984
Reference: [3] L. Außenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.Dissertationes Math. Vol. CCCLXXXIV, Warszawa, 1998. MR 1736984
Reference: [4] W. Banaszczyk: On the existence of exotic Banach-Lie groups.Ann. Math. 264 (1983), 485–493. Zbl 0502.22010, MR 0716262, 10.1007/BF01456956
Reference: [5] W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics Vol.  1466.Springer-Verlag, Berlin, 1991. MR 1119302
Reference: [6] T. Bartoszyński and H. Judah: Set Theory: on the Structure of the Real Line.A. K.  Peters, Wellesley, 1990, pp. 546. MR 1350295
Reference: [7] S. Berhanu, W. W.  Comfort and J. D.  Reid: Counting subgroups and topological group topologies.Pacific J.  Math. 116 (1985), 217–241. MR 0771633, 10.2140/pjm.1985.116.217
Reference: [8] N.  Bourbaki: General Topology, Part 2.Addison-Wesley Publishing Company, Reading, Massachusetts, 1966, pp. 363. Zbl 0301.54002, MR 0205211
Reference: [9] M. J.  Chasco: Pontryagin duality for metrizable groups.Archiv der Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160
Reference: [10] K.  Ciesielski: Set Theory for the Working Mathematician.London Mathematical Society Student Texts, Vol. 39 Cambridge University Press, Cambridge, 1997. Zbl 0938.03067, MR 1475462
Reference: [11] W. W.  Comfort and Dieter Remus: Abelian torsion groups with a pseudocompact group topology.Forum Math. 6 (1994), 323–337. MR 1269843, 10.1515/form.1994.6.323
Reference: [12] W. W.  Comfort and Dieter  Remus: Pseudocompact refinements of compact group topologies.Math. Z. 215 (1994), 337–346. MR 1262521, 10.1007/BF02571718
Reference: [13] W. W.  Comfort and K. A. Ross: Topologies induced by groups of characters.Fund. Math. 55 (1964), 283–291. MR 0169940, 10.4064/fm-55-3-283-291
Reference: [14] W. W.  Comfort and V.  Saks: Countably compact groups and finest totally bounded topologies.Pacific J.  Math. 49 (1973), 33–44. MR 0372104, 10.2140/pjm.1973.49.33
Reference: [15] W. W.  Comfort, F. Javier Trigos-Arrieta and and Ta-Sun Wu: The Bohr compactification, modulo a metrizable subgroup.Fund. Math. 143 (1993), 119–136. MR 1240629
Reference: [16] W. W.  Comfort and J. van  Mill: Some topological groups with, and some without, proper dense subgroups.Topology Appl. 41 (1991), 3–15. MR 1129694, 10.1016/0166-8641(91)90096-5
Reference: [17] D. N.  Dikranjan, I. R.  Prodanov and L. N.  Stoyanov: Topological Groups (Characters, Dualities and Minimal Group Topologies). Monographs and Textbooks in Pure and Applied Mathematics 130.Marcel Dekker, Inc., New York-Basel, 1990. MR 1015288
Reference: [18] E. K. van Douwen: The maximal totally bounded group topology on  $G$ and the biggest minimal $G$-space for Abelian groups  $G$.Topology Appl. 34 (1990), 69–91. Zbl 0696.22003, MR 1035461, 10.1016/0166-8641(90)90090-O
Reference: [19] R. Engelking: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [20] P. Flor: Zur Bohr-Konvergenz der Folgen.Math. Scand. 23 (1968), 169–170. MR 0251457, 10.7146/math.scand.a-10907
Reference: [21] D. H.  Fremlin: Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics, Vol. 84.Cambridge University Press, Cambridge, 1984. MR 0780933
Reference: [22] L.  Fuchs: Infinite Abelian Groups, Vol.  I.Academic Press, New York-San Francisco-London, 1970. Zbl 0209.05503, MR 0255673
Reference: [23] J. Galindo and S.  Hernández: On the completion of a MAP  group.In: Papers on General Topology and Applications. Proc. Eleventh (August, 1995) summer topology conference at the University of Maine. Annals New York Acad. Sci. Vol.  806, S.  Andima, R. C.  Flagg, G. Itzkowitz, Yung Kong, R. Kopperman, and P.  Misra (eds.), New York, 1996, pp. 164–168. MR 1429651
Reference: [24] I.  Glicksberg: Uniform boundedness for groups.Canad. J.  Math. 14 (1962), 269–276. Zbl 0109.02001, MR 0155923, 10.4153/CJM-1962-017-3
Reference: [25] A.  Hajnal and I.  Juhász: Remarks on the cardinality of compact spaces and their Lindelöf subspaces.Proc. Amer. Math. Soc. 59 (1976), 146–148. MR 0423283
Reference: [26] E.  Hewitt and K. A.  Ross: Abstract Harmonic Analysis, Vol. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol.  115.Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0551496
Reference: [27] E. Hewitt and K. A.  Ross: Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups.Math. Ann. 160 (1965), 171–194. MR 0186751, 10.1007/BF01360918
Reference: [28] E.  Hewitt and K. R.  Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics Vol. 25.Springer-Verlag, New York, 1965.
Reference: [29] H.  Heyer: Dualität lokalkompakter Gruppen. Lecture Notes in Mathematics Vol.  150.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0274648, 10.1007/BFb0069778
Reference: [30] M. Higasikawa: Non-productive duality properties of topological groups.Topology Proc. 25 (2002), 207–216. MR 1925684
Reference: [31] R.  Hooper: A study of topological Abelian groups based on norm space theory.PhD.  thesis, University of Maryland, College Park, 1967.
Reference: [32] M.  Hrušák: Personal communication, November 20, 2000..
Reference: [33] T. Jech: Set Theory.Academic Press, Inc., San Diego, 1978. Zbl 0419.03028, MR 0506523
Reference: [34] S. Kaplan: Extensions of the Pontryagin duality  I: infinite products.Duke Math.  J. 15 (1948), 649–658. MR 0026999, 10.1215/S0012-7094-48-01557-9
Reference: [35] S.  Kaplan: Extensions of the Pontryagin duality II: direct and inverse sequences.Duke Math.  J. 15 (1950), 419–435. MR 0049906, 10.1215/S0012-7094-50-01737-6
Reference: [36] A. S.  Kechris: Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol.  156.Springer-Verlag, New York, 1994. MR 1321597
Reference: [37] Y. Kōmura: Some examples of linear topological spaces.Math. Ann. 153 (1964), 150–162. MR 0185417, 10.1007/BF01361183
Reference: [38] K.  Kunen: Set Theory, An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics.North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980. MR 0597342
Reference: [39] H. Leptin: Abelsche Gruppen mit kompakten Charaktergruppen und Dualitätstheorie gewisser linear topologischer abelscher Gruppen.Abhandlungen Mathem. Seminar Univ. Hamburg 19 (1955), 244–263. Zbl 0065.01501, MR 0068545, 10.1007/BF02988875
Reference: [40] V. I.  Malykhin and B. Šapirovskiĭ: Martin’s axiom and topological spaces.Doklady Akad. Nauk SSSR 213 (1973), 532–535. (Russian)
Reference: [41] N.  Noble: $k$-groups and duality.Trans. Amer. Math. Soc. 151 (1970), 551–561. Zbl 0229.22012, MR 0270070
Reference: [42] S. U.  Raczkowski-Trigos: Totally bounded groups.PhD. thesis, Wesleyan University, Middletown, 1998.
Reference: [43] M. Rajagopalan and H. Subrahmanian: Dense subgroups of locally compact groups.Colloq. Math. 35 (1976), 289–292. MR 0417325
Reference: [44] G. A.  Reid: On sequential convergence in groups.Math. Z. 102 (1967), 225–235. Zbl 0153.04302, MR 0220000, 10.1007/BF01112440
Reference: [45] D.  Remus: Zur Struktur des Verbandes der Gruppentopologien.PhD. thesis, Universität Hannover, Hannover, 1983. (English) Zbl 0547.22004
Reference: [46] D. Remus: The number of $T_2$-precompact group topologies on free groups.Proc. Amer. Math. Soc. 95 (1985), 315–319. MR 0801346
Reference: [47] D.  Remus and F. Javier Trigos-Arrieta: Abelian groups which satisfy Pontryagin duality need not respect compactness.Proc. Amer. Math. Soc. 117 (1993), 1195–1200. MR 1132422, 10.1090/S0002-9939-1993-1132422-4
Reference: [48] D.  Remus and F. Javier Trigos-Arrieta: Locally convex spaces as subgroups of products of locally compact Abelian groups.Math. Japon. 46 (1997), 217–222. MR 1479817
Reference: [49] W. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients.McGraw-Hill International Book Company, New York-Toronto, 1981. MR 0644485
Reference: [50] H. H.  Schaefer: Topological Vector Spaces.Graduate Texts in Mathematics, Vol. 3, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1986, pp. 294. MR 0342978
Reference: [51] S. J.  Sidney: Weakly dense subgroups of Banach spaces.Indiana Univ. Math.  J. 26 (1977), 981–986. Zbl 0344.46033, MR 0458134, 10.1512/iumj.1977.26.26079
Reference: [52] M. Freundlich Smith: The Pontrjagin duality theorem in linear spaces.Ann. Math. 56 (1952), 248–253. MR 0049479, 10.2307/1969798
Reference: [53] E.  Specker: Additive Gruppen von Folgen ganzer Zahlen.Portugal. Math. 9 (1950), 131–140. MR 0039719
Reference: [54] S. M.  Srivastava: A Course on Borel Sets.Graduate Texts in Mathematics, Vol. 180, Springer-Verlag, New York-Berlin-Heildelberg, 1998. Zbl 0903.28001, MR 1619545
Reference: [55] H.  Steinhaus: Sur les distances des points des ensembles de mesure positive.Fund. Math. 1 (1920), 93–104. 10.4064/fm-1-1-93-104
Reference: [56] K.  Stromberg: An elementary proof of Steinhaus’ theorem.Proc. Amer. Math. Soc. 36 (1972), 308. MR 0308368
Reference: [57] S.  Todorčević: .Personal Communication, August, 2001.
Reference: [58] F. J.  Trigos-Arrieta: Pseudocompactness on groups.In: General Topology and Applications, S. J.  Andima, R. Kopperman, P. R.  Misra, J. Z.  Reichman, and A. R.  Todd (eds.), Marcel Dekker, Inc., New York-Basel-Hong Kong, 1991, pp. 369–378. Zbl 0777.22003, MR 1142814
Reference: [59] F. J.  Trigos-Arrieta: Continuity, boundedness, connectedness and the Lindelöf property for topological groups.J.  Pure and Applied Algebra 70 (1991), 199–210. Zbl 0724.22003, MR 1100517, 10.1016/0022-4049(91)90018-W
Reference: [60] J. E.  Vaughan: Small uncountable cardinals and topology.In: Open Problems in Topology, Chapter 11, J. van Mill, G. M.  Reed (eds.), Elsevier Science Publishers (B. V.), Amsterdam-New York-Oxford-Tokyo, 1990. MR 1078647
Reference: [61] W. C.  Waterhouse: Dual groups of vector spaces.Pacific J.  Math. 26 (1968), 193–196. Zbl 0162.44102, MR 0232190, 10.2140/pjm.1968.26.193
Reference: [62] A.  Weil: Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, Vol.  551.(1938), Hermann & Cie, Paris.
Reference: [63] A. Weil: L’Integration dans les Groupes Topologiques et ses Applications. Actualités Scientifiques et Industrielle, Publ. Math. Inst. Strasbourg.Hermann, Paris, 1951.
.

Files

Files Size Format View
CzechMathJ_54-2004-2_22.pdf 502.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo