Previous |  Up |  Next

Article

Keywords:
harmonic majorization; cone; minimally thin
Summary:
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
References:
[1] H. Aikawa: Sets of determination for harmonic functions in an NTA  domain. J.  Math. Soc. Japan 48 (1996), 299-315. DOI 10.2969/jmsj/04820299 | MR 1376083 | Zbl 0862.31002
[2] H.  Aikawa, M.  Essén: Potential Theory-Selected Topics. Lecture Notes in Math. Vol.  1633. Springer-Verlag, , 1996. MR 1439503
[3] A.  Ancona: Positive Harmonic Functions and Hyperbolicity. Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. MR 0973878
[4] D. H. Armitage, Ü. Kuran: On positive harmonic majorization of  $y$ in $\mathbb{R}^{n}\times (0,+\infty )$. J.  London Math. Soc. Ser. II 3 (1971), 733–741. MR 0289799
[5] D. H. Armitage, S. J. Gardiner: Classical Potential Theory. Springer-Verlag, , 2001. MR 1801253
[6] V. S.  Azarin: Generalization of a theorem of Hayman on subharmonic functions in an $m$-dimensional cone Am. Math. Soc. Transl. II.  Ser. 80 (1969), 119–138.
[7] A.  Beurling: A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser.  AI. Math. 372 (1965), . MR 0188466 | Zbl 0139.06402
[8] M.  Brelot: On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol.  175. Springer-Verlag, , 1971. MR 0281940
[9] R.  Courant, D.  Hilbert: Methods of Mathematical Physics, 1st English edition. Interscience, New York, 1954.
[10] B. E. J.  Dahlberg: A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 2380–250. MR 0409847 | Zbl 0342.31004
[11] J. L.  Doob: Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, 1984. MR 0731258 | Zbl 0549.31001
[12] D. S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46 (1982), 80–147. DOI 10.1016/0001-8708(82)90055-X | MR 0676988
[13] D.  Gilbarg, N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977. MR 0473443
[14] L. L.  Helms: Introduction to Potential Theory. Wiley, New York, 1969. MR 0261018 | Zbl 0188.17203
[15] V. G.  Maz’ya: Beurling’s theorem on a minimum principle for positive harmonic functions. Zapiski Nauchnykh Seminarov LOMI 30 (1972). MR 0330484
[16] I.  Miyamoto, M.  Yanagishitam, and H.  Yoshida: Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone. Canad. Math. Bull. 46 (2003), 252–264. DOI 10.4153/CMB-2003-025-5 | MR 1981679
[17] I.  Miyamoto, H.  Yoshida: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J.  Math. Soc. Japan 54 (2002), 487–512. DOI 10.2969/jmsj/1191593906 | MR 1900954
[18] P.  Sjögren: Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel. Lecture Notes in Math. Vol.  563, Springer-Verlag, , 1976, pp. 275–282. MR 0588344
[19] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. MR 0290095 | Zbl 0207.13501
[20] H.  Yoshida: Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. Ser. III 54 (1987), 267–299. MR 0872808 | Zbl 0645.31003
[21] Y.  Zhang: Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel. Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. MR 1663163
Partner of
EuDML logo