Previous |  Up |  Next

Article

Keywords:
variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem
Summary:
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
References:
[1] R. Acar and C. Vogel: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994), 1217–1229. DOI 10.1088/0266-5611/10/6/003 | MR 1306801
[2] L. Ambrosio, S. Mortola and V. Tortorelli: Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991), 269–323. MR 1113814
[3] G. Anzellotti and M. Giaquinta: ${BV}$ functions and traces. Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. MR 0555952
[4] F. Atkinson, L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation: the supercritical case. Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74. MR 0956058
[5] E. Bombieri and E. Giusti: Local estimates for the gradient of non-parametric surfaces of prescribed mean curvature. Comm. Pure Appl. Math. 26 (1973), 381–394. DOI 10.1002/cpa.3160260306 | MR 0344977
[6] G. Buttazzo: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989. MR 1020296 | Zbl 0669.49005
[7] S. Carl and V. K. Le: Sub-supersolution method for quasilinear parabolic variational inequalities. J. Math. Anal. Appl. 293 (2004), 269–284. DOI 10.1016/j.jmaa.2004.01.005 | MR 2052546
[8] S. Carl, V. K. Le and D. Motreanu: Existence and comparison results for quasilinear evolution hemivariational inequalities. Electron. J. Differential Equations 57 (2004), 1–17. MR 2047413
[9] S. Carl, V. K. Le and D. Motreanu: The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities. Differential Integral Equations 17 (2004), 165–178. MR 2035501
[10] S. Carl, V. K. Le and D. Motreanu: Existence and comparison principles for general quasilinear variational-hemivariational inequalities. J. Math. Anal. Appl. 302 (2005), 65–83. DOI 10.1016/j.jmaa.2004.08.011 | MR 2106547
[11] M. Carriero, A. Leaci and E. Pascali: On the semicontinuity and the relaxation for integrals with respect to the Lebesgue measure added to integrals with respect to a Radon measure. Ann. Mat. Pura Appl. 149 (1987), 1–21. DOI 10.1007/BF01773922 | MR 0932773
[12] M. Carriero, Dal Maso, A. Leaci and E. Pascali: Relaxation of the nonparametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988), 359–396. MR 0978576
[13] C. V. Coffman and W. K. Ziemer: A prescribed mean curvature problem on domains without radial symmetry. SIAM J. Math. Anal. 22 (1991), 982–990. DOI 10.1137/0522063 | MR 1112060
[14] M. Conti and F. Gazzola: Existence of ground states and free-boundary problems for the prescribed mean curvature equation. Adv. Differential Equations 7 (2002), 667–694. MR 1894862
[15] G. Dal-Maso: An introduction to $\Gamma $-convergence. Birkhäuser, 1993. MR 1201152 | Zbl 0816.49001
[16] I. Ekeland and R. Temam: Analyse convexe et problèmes variationnels. Dunod, 1974. MR 0463993
[17] L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions. CRC Press, Boca Raton, 1992. MR 1158660
[18] R. Finn: Equilibrium capillary surfaces. Springer, New York, 1986. MR 0816345 | Zbl 0583.35002
[19] F. Gastaldi and F. Tomarelli: Some remarks on nonlinear noncoercive variational inequalities. Boll. Un. Math. Ital. 7 (1987), 143–165. MR 0895456
[20] C. Gerhardt: Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature. Math. Z. 139 (1974), 173–198. DOI 10.1007/BF01418314 | MR 0437925 | Zbl 0316.49005
[21] C. Gerhardt: On the regularity of solutions to variational problems in $BV(\Omega )$. Math. Z. 149 (1976), 281–286. DOI 10.1007/BF01175590 | MR 0417887 | Zbl 0317.49052
[22] C. Gerhardt: Boundary value problems for surfaces of prescribed mean curvature. J. Math. Pures Appl. 58 (1979), 75–109. MR 0533236 | Zbl 0413.35024
[23] D. Gilbarg and N. Trudinger: Elliptic partial differential equations of second order. Springer, Berlin, 1983. MR 0737190
[24] E. Giusti: Minimal surfaces and functions of bounded variations. Birkhäuser, Basel, 1984. MR 0775682
[25] C. Goffman and J. Serrin: Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159–178. DOI 10.1215/S0012-7094-64-03115-1 | MR 0162902
[26] P. Habets and P. Omari: Positive solutions of an indefinite prescribed mean curvature problem on a general domain. Adv. Nonlinear Studies 4 (2004), 1–13. DOI 10.1515/ans-2004-0101 | MR 2033556
[27] N. Ishimura: Nonlinear eigenvalue problem associated with the generalized capillarity equation. J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466. MR 1071430 | Zbl 0723.49033
[28] T. Kusahara and H. Usami: A barrier method for quasilinear ordinary differential equations of the curvature type. Czech. Math. J. 50 (2000), 185–196. DOI 10.1023/A:1022409808258 | MR 1745471
[29] V. K. Le: Existence of positive solutions of variational inequalities by a subsolution–supersolution approach. J. Math. Anal. Appl. 252 (2000), 65–90. DOI 10.1006/jmaa.2000.6907 | MR 1797845 | Zbl 0980.49011
[30] V. K. Le: Subsolution-supersolution method in variational inequalities. Nonlinear Analysis 45 (2001), 775–800. DOI 10.1016/S0362-546X(99)00440-X | MR 1841208 | Zbl 1040.49008
[31] V. K. Le: Some existence results on nontrivial solutions of the prescribed mean curvature equation. Adv. Nonlinear Studies 5 (2005), 133–161. MR 2126734 | Zbl 1158.53335
[32] V. K. Le and K. Schmitt: Sub-supersolution theorems for quasilinear elliptic problems: A variational approach. Electron. J. Differential Equations (2004), 1–7. MR 2108889
[33] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. MR 0259693 | Zbl 0189.40603
[34] M. Marzocchi: Multiple solutions of quasilinear equations involving an area-type term. J. Math. Anal. Appl. 196 (1995), 1093–1104. DOI 10.1006/jmaa.1995.1462 | MR 1365242 | Zbl 0854.35042
[35] J. Mawhin and M. Willem: Critical point theory and Hamiltonian systems. Springer Verlag, New York, 1989. MR 0982267
[36] M. Miranda: Dirichlet problem with $L^1$ data for the non-homogeneous minimal surface equation. Indiana Univ. Math. J. 24 (1974), 227–241. DOI 10.1512/iumj.1975.24.24020 | MR 0352682
[37] W. M. Ni and J. Serrin: Existence and non-existence theorems for quasilinear partial differential equations the anomalous case. Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257.
[38] W. M. Ni and J. Serrin: Non-existence theorems for quasilinear partial differential equations. Rend. Circ. Math. Palermo 2 (1985), 171–185. MR 0881397
[39] E. S. Noussair, C. A. Swanson and Y. Jianfu: A barrier method for mean curvature problems. Nonlinear Anal. 21 (1993), 631–641. DOI 10.1016/0362-546X(93)90005-D | MR 1245866
[40] L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation. Proc. Amer. Math. Soc. 100 (1987), 694–700. DOI 10.1090/S0002-9939-1987-0894440-8 | MR 0894440
[41] W. Ziemer: Weakly differentiable functions. Springer, New York, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo