Previous |  Up |  Next


Title: Resonance and multiplicity in periodic boundary value problems with singularity (English)
Author: Rachůnková, Irena
Author: Tvrdý, Milan
Author: Vrkoč, Ivo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959
Volume: 128
Issue: 1
Year: 2003
Pages: 45-70
Summary lang: English
Category: math
Summary: The paper deals with the boundary value problem \[ u^{\prime \prime }+k\,u=g(u)+e(t),\quad u(0)=u(2\pi ),\,\,u^{\prime }(0)=u^{\prime }(2\pi ), \] where $k\in \mathbb{R}$, $g\:I\mapsto \mathbb{R}$ is continuous, $e\in \mathbb{L}J$ and $\lim _{x\rightarrow 0+}\int _x^1g(s)\,\hspace{0.56905pt}\text{d}s=\infty .$ In particular, the existence and multiplicity results are obtained by using the method of lower and upper functions which are constructed as solutions of related auxiliary linear problems. (English)
Keyword: second order nonlinear ordinary differential equation
Keyword: periodic problem
Keyword: lower and upper functions
MSC: 34B15
MSC: 34C25
idZBL: Zbl 1023.34015
idMR: MR1973424
Date available: 2009-09-24T22:06:52Z
Last updated: 2015-11-01
Stable URL:
Reference: [1] M. del Pino, R. Manásevich, A. Montero: $T$-periodic solutions for some second order differential equations with singularities.Proc. Royal Soc. Edinburgh 120A (1992), 231–244. MR 1159183
Reference: [2] A. Fonda: Periodic solutions of scalar second order differential equations with a singularity.Mémoire de la Classe de Sciences, Acad. Roy. Belgique 8-IV (1993), 1–39. Zbl 0792.34040, MR 1259048
Reference: [3] A. Fonda, R. Manásevich, F. Zanolin: Subharmonic solutions for some second-order differential equations with singularities.SIAM J. Math. Anal. 24 (1993), 1294–1311. MR 1234017, 10.1137/0524074
Reference: [4] W. Ge, J. Mawhin: Positive solutions to boundary value problems for second-order ordinary differential equations with singular nonlinearities.Result. Math. 34 (1998), 108–119. MR 1635588, 10.1007/BF03322042
Reference: [5] P. Habets, L. Sanchez: Periodic solutions of some Liénard equations with singularities.Proc. Amer. Math. Soc. 109 (1990), 1035–1044. MR 1009991
Reference: [6] A. C. Lazer, S. Solimini: On periodic solutions of nonlinear differential equations with singularities.Proc. Amer. Math. Soc. 99 (1987), 109–114. MR 0866438, 10.1090/S0002-9939-1987-0866438-7
Reference: [7] J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.Topological Methods for Ordinary Differential Equations. Lect. Notes Math., M. Furi (ed.) vol. 1537, Springer, Berlin, 1993, pp. 73–142. Zbl 0798.34025, MR 1226930
Reference: [8] D. S. Mitrinović, J. E. Pečarić, A. M. Fink: Inequalities Involving Functions and Their Integrals and Derivatives.Kluwer, Dordrecht, 1991. MR 1190927
Reference: [9] P. Omari, W. Ye: Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities.Differ. Integral Equ. 8 (1995), 1843–1858. Zbl 0831.34048, MR 1347985
Reference: [10] I. Rachůnková: On the existence of more positive solutions of periodic BVP with singularity.Applicable Anal. 79 (2001), 257–275. MR 1880535, 10.1080/00036810108840960
Reference: [11] I. Rachůnková, M. Tvrdý: Nonlinear systems of differential inequalities and solvability of certain nonlinear second order boundary value problems.J. Inequal. Appl. 6 (2001), 199–226. MR 1835526
Reference: [12] I. Rachůnková, M. Tvrdý: Construction of lower and upper functions and their application to regular and singular boundary value problems.Nonlinear Analysis, T.M.A. 47 (2001), 3937–3948. MR 1972337
Reference: [13] I. Rachůnková, M. Tvrdý: Localization of nonsmooth lower and upper functions for periodic boundary value problems.Math. Bohem. 127 (2002), 531–545. MR 1942639
Reference: [14] I. Rachůnková, M. Tvrdý, I. Vrkoč: Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems.J. Differ. Equations 176 (2001), 4450–469.
Reference: [15] L. Scheeffer: Über die Bedeutung der Begriffe “Maximum und Minimum” in der Variationsrechnung.Math. Ann. 26 (1885), 197–208. MR 1510341, 10.1007/BF01444332
Reference: [16] P. Yan, M. Zhang: Higher order nonresonance for differential equations with singularities.Preprint.
Reference: [17] M. Zhang: A relationship between the periodic and the Dirichlet BVP’s of singular differential equations.Proc. Royal Soc. Edinburgh 128A (1998), 1099–1114. MR 1642144


Files Size Format View
MathBohem_128-2003-1_5.pdf 397.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo