Previous |  Up |  Next

Article

Keywords:
partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction
Summary:
Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
References:
[1] T.  Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math. B. G.  Teubner, Leipzig, 1999. MR 1716824
[2] T.  Apel, F.  Milde: Comparison of several mesh refinement strategies near edges. Commun. Numer. Methods Eng. 12 (1996), 373–381. DOI 10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8
[3] T.  Apel, S.  Nicaise: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998), 519–549. DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R | MR 1615426
[4] O.  Axelsson, V. A.  Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984. MR 0758437
[5] M.  Bern, P.  Chew, D.  Eppstein, and J.  Ruppert: Dihedral bounds for mesh generation in high dimensions. Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), SIAM, Philadelphia, 1995, pp. 189–196. MR 1321850
[6] F.  Bornemann, B.  Erdmann, and R.  Kornhuber: Adaptive multilevel methods in three space dimensions. Int. J.  Numer. Methods Eng. 36 (1993), 3187–3203. DOI 10.1002/nme.1620361808 | MR 1236370
[7] E.  Bänsch: Local mesh refinement in  2 and 3  dimensions. IMPACT Comput. Sci. Eng. 3 (1991), 181–191. DOI 10.1016/0899-8248(91)90006-G | MR 1141298
[8] L.  Collatz: Numerische Behandlung von Differentialgleichungen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951. MR 0043563 | Zbl 0054.05101
[9] R.  Cools: Monomial cubature rules since “Stroud”: A compilation.  II. J.  Comput. Appl. Math. 112 (1999), 21–27. DOI 10.1016/S0377-0427(99)00229-0 | MR 1728449 | Zbl 0954.65021
[10] R.  Cools, P.  Rabinowitz: Monomial cubature rules since “Stroud”: A compilation. J.  Comput. Appl. Math. 48 (1993), 309–326. DOI 10.1016/0377-0427(93)90027-9 | MR 1252544
[11] H. S.  M.  Coxeter: Trisecting an orthoscheme. Comput. Math. Appl. 17 (1989), 59–71. DOI 10.1016/0898-1221(89)90148-X | MR 0994189 | Zbl 0706.51019
[12] M.  Dauge: Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol.  1341. Springer-Verlag, Berlin, 1988. MR 0961439
[13] M.  Feistauer, J.  Felcman, M.  Rokyta, and Z. Vlášek: Finite-element solution of flow problems with trailing conditions. J.  Comput. Appl. Math. 44 (1992), 131–165. DOI 10.1016/0377-0427(92)90008-L | MR 1197680
[14] G.  Fichera: Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol.  3. Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978. MR 0519677
[15] H.  Fujii: Some remarks on finite element analysis of time-dependent field problems. Theory Pract. Finite Elem. Struct. Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. Zbl 0373.65047
[16] B. Q.  Guo: The $h$-$p$ version of the finite element method for solving boundary value problems in polyhedral domains. Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167, M.  Costabel, M.  Dauge, and C.  Nicaise (eds.), Marcel Dekker, New York, 1995, pp. 101–120. MR 1301344 | Zbl 0855.65114
[17] P.  Keast: Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Eng. 55 (1986), 339–348. DOI 10.1016/0045-7825(86)90059-9 | MR 0844909 | Zbl 0572.65008
[18] S.  Korotov, M.  Křížek: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J.  Numer. Anal. 39 (2001), 724–733. DOI 10.1137/S003614290037040X | MR 1860255
[19] S.  Korotov, M.  Křížek: Local nonobtuse tetrahedral refinements of a cube. Appl. Math. Lett. 16 (2003), 1101–1104. DOI 10.1016/S0893-9659(03)90101-7 | MR 2013079
[20] I.  Kossaczký: A recursive approach to local mesh refinement in two and three dimensions. J.  Comput. Appl. Math. 55 (1994), 275–288. DOI 10.1016/0377-0427(94)90034-5 | MR 1329875
[21] M.  Křížek, L.  Liu: On the maximum and comparison principles for a steady-state nonlinear heat conduction problem. Z.  Angew. Math. Mech. 83 (2003), 559–563. DOI 10.1002/zamm.200310054 | MR 1994036
[22] M.  Křížek, Qun Lin: On diagonal dominance of stiffness matrices in  3D. East-West J.  Numer. Math. 3 (1995), 59–69. MR 1331484
[23] M.  Křížek, T.  Strouboulis: How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition. Numer. Methods Partial Differ. Equations 13 (1997), 201–214. DOI 10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T | MR 1436615
[24] J. M.  Maubach: Local bisection refinement for $n$-simplicial grids generated by reflection. SIAM J.  Sci. Comput. 16 (1995), 210–227. DOI 10.1137/0916014 | MR 1311687 | Zbl 0816.65090
[25] M.  Picasso: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19 (2003), 13–23. DOI 10.1002/cnm.546 | MR 1952014 | Zbl 1021.65052
[26] M.  Picasso: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J.  Sci. Comput. 24 (2003), 1328–1355. DOI 10.1137/S1064827501398578 | MR 1976219 | Zbl 1061.65116
[27] A.  Plaza, G. F.  Carey: Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 32 (2000), 195–218. DOI 10.1016/S0168-9274(99)00022-7 | MR 1734507
[28] H.  Schmitz, K.  Volk, and W.  Wendland: Three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equations 9 (1993), 323–337. DOI 10.1002/num.1690090309 | MR 1216118
[29] R. S.  Varga: Matrix iterative analysis. Prentice-Hall, New Jersey, 1962. MR 0158502
Partner of
EuDML logo