Previous |  Up |  Next


Title: Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary $p$-summable right-hand side (English)
Author: Druet, Pierre-Etienne
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 2
Year: 2010
Pages: 111-149
Summary lang: English
Category: math
Summary: We consider a model for transient conductive-radiative heat transfer in grey materials. Since the domain contains an enclosed cavity, nonlocal radiation boundary conditions for the conductive heat-flux are taken into account. We generalize known existence and uniqueness results to the practically relevant case of lower integrable heat-sources, and of nonsmooth interfaces. We obtain energy estimates that involve only the $L^p$ norm of the heat sources for exponents $p$ close to one. Such estimates are important for the investigation of models in which the heat equation is coupled to Maxwell's equations or to the Navier-Stokes equations (dissipative heating), with many applications such as crystal growth. (English)
Keyword: radiative heat transfer
Keyword: nonlinear parabolic equation
Keyword: nonlocal boundary condition
Keyword: right-hand side in $L^1$
MSC: 35D05
MSC: 35D30
MSC: 35K05
MSC: 35K15
MSC: 35K20
MSC: 35K55
MSC: 35K59
MSC: 80A20
idZBL: Zbl 1224.35057
idMR: MR2600939
DOI: 10.1007/s10492-010-0005-9
Date available: 2010-07-20T13:35:13Z
Last updated: 2016-04-02
Stable URL:
Reference: [1] Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data.J. Funct. Anal. 87 (1989), 149-169. MR 1025884, 10.1016/0022-1236(89)90005-0
Reference: [2] Druet, P.-E.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L^p$ ($p\geq1$).Math. Methods Appl. Sci. 32 (2009), 135-166 Available at Zbl 1151.35319, MR 2478911, 10.1002/mma.1029
Reference: [3] Hansen, O.: The Radiosity Equation on Polyhedral Domains.Logos Verlag Berlin (2002). Zbl 1005.65143
Reference: [4] Klein, O., Philip, P.: Transient conductive-radiative heat transfer: Discrete existence and uniqueness for a finite volume scheme.Math. Models Methods Appl. Sci. 15 (2005), 227-258. Zbl 1070.65075, MR 2119998, 10.1142/S0218202505000340
Reference: [5] Klein, O., Philip, P., Sprekels, J.: Modeling and simulation of sublimation growth in SiC bulk single crystals.Interfaces Free Bound. 6 (2004), 295-314. MR 2095334
Reference: [6] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-linear Equations of Parabolic Type, Vol. 23. Translations of Mathematical Monographs.AMS Providence (1968).
Reference: [7] Laitinen, M., Tiihonen, T.: Conductive-radiative heat transfer in grey materials.Q. Appl. Math. 59 (2001), 737-768. MR 1866555
Reference: [8] Lewandowski, R.: Analyse mathématique et océanographie.Masson Paris (1997), French.
Reference: [9] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [10] Metzger, M.: Existence for a time-dependent heat equation with non-local radiation terms.Math. Methods Appl. Sci. 22 (1999), 1101-1119. Zbl 0933.35104, MR 1706102, 10.1002/(SICI)1099-1476(19990910)22:13<1101::AID-MMA74>3.0.CO;2-N
Reference: [11] Meyer, C., Philip, P., Tröltzsch, F.: Optimal control of a semilinear PDE with nonlocal radiation interface conditions.SIAM J. Control Optim. 45 (2006), 699-721. MR 2246096, 10.1137/040617753
Reference: [12] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
Reference: [13] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus.Ann. Instit. Fourier 15 (1965), 189-258 French. Zbl 0151.15401, MR 0192177, 10.5802/aif.204
Reference: [14] Tiihonen, T.: A nonlocal problem arising from heat radiation on non-convex surfaces.Eur. J. App. Math. 8 (1997), 403-416. Zbl 0889.45013, MR 1471600
Reference: [15] Tiihonen, T.: Stefan-Boltzmann radiation on nonconvex surfaces.Math. Methods Appl. Sci. 20 (1997), 47-57. Zbl 0872.35044, MR 1429330, 10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B
Reference: [16] Voigt, A.: Numerical simulation of industrial crystal growth.PhD. Thesis Technische Universität München München (2001). Zbl 1009.82001


Files Size Format View
AplMat_55-2010-2_2.pdf 408.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo