Previous |  Up |  Next

Article

Keywords:
Volterra operator; stability of operators
Summary:
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$
References:
[1] Allan, G. R.: Power-bounded elements in a Banach algebra and a theorem of Gelfand. In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. MR 1021992 | Zbl 0703.46029
[2] Allan, G. R.: Power-bounded elements and radical Banach algebras. In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. MR 1456997 | Zbl 0884.47003
[3] Batty, C. J. K.: Asymptotic behaviour of semigroups of operators. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. MR 1285599 | Zbl 0818.47034
[4] Chill, R., Tomilov, Y.: Stability of operator semigroups: ideas and results. In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. MR 2336713 | Zbl 1136.47026
[5] Esterle, J.: Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras. Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. DOI 10.1007/BFb0064548 | MR 0697579
[6] Halmos, P.: Hilbert Space Problem Book. Grad. Texts in Math. Mir Moskau (1970). MR 0268689
[7] Katznelson, Y., Tzafriri, L.: On power bounded operators. J. Funct. Anal. 68 (1986), 313-328. DOI 10.1016/0022-1236(86)90101-1 | MR 0859138 | Zbl 0611.47005
[8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.: Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator. Proc. London Math. Soc. 91 (2005), 761-788. MR 2180462
[9] Pytlik, T.: Analytic semigroups in Banach algebras and a theorem of Hille. Colloq. Math. 51 (1987), 287-294. MR 0891298 | Zbl 0632.46043
[10] Szegö, G.: Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23. Amer. Math. Soc. Providence (1975). MR 0310533
[11] Tomilov, Y., Zem�nek, J.: A new way of constructing examples in operator ergodic theory. Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. DOI 10.1017/S0305004103007436 | MR 2075049
[12] Tsedenbayar, D.: On the power boundedness of certain Volterra operator pencils. Studia Math. 156 (2003), 59-66. DOI 10.4064/sm156-1-4 | MR 1961061 | Zbl 1028.47002
[13] Zemánek, J.: On the Gelfand-Hille theorems. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. MR 1285622
Partner of
EuDML logo