Previous |  Up |  Next

Article

Keywords:
weak initial compactness; ${\mathfrak m}$pcap; $[\mu ,\kappa ]$-compactness; pseudo-$(\kappa ,\lambda )$-compactness; covering number
Summary:
The statement in the title solves a problem raised by T. Retta. We also present a variation of the result in terms of $[\mu ,\kappa ]$-compactness.
References:
[1] Arhangel'skii, A. V.: Strongly $\tau$-pseudocompact spaces. Topology Appl. 89 (1998), 285-298. DOI 10.1016/S0166-8641(97)00220-4 | MR 1645188 | Zbl 0932.54025
[2] Comfort, W. W., Negrepontis, S.: Chain Conditions in Topology. Cambridge Tracts in Mathematics 79, Cambridge University Press, Cambridge-New York (1982). MR 0665100 | Zbl 0488.54002
[3] Frolík, Z.: Generalisations of compact and Lindelöf spaces. Russian. English summary Czech. Math. J. 9 (1959), 172-217. MR 0105075
[4] Lipparini, P.: Some compactness properties related to pseudocompactness and ultrafilter convergence. Topol. Proc. 40 (2012), 29-51. MR 2793281 | Zbl 1266.54008
[5] Lipparini, P.: More generalizations of pseudocompactness. Topology Appl. 158 (2011), 1655-1666. DOI 10.1016/j.topol.2011.05.039 | MR 2812474 | Zbl 1239.54011
[6] Retta, T.: Some cardinal generalizations of pseudocompactness. Czech. Math. J. 43 (1993), 385-390. MR 1249608 | Zbl 0798.54032
[7] Shelah, S.: Cardinal Arithmetic. Oxford Logic Guides, 29, The Clarendon Press, Oxford University Press, New York (1994). MR 1318912 | Zbl 0848.03025
Partner of
EuDML logo