[2] Dajani, K., Kraaikamp, C.: 
Ergodic Theory of Numbers. The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). 
MR 1917322 | 
Zbl 1033.11040[4] Falconer, K. J.: 
Fractal Geometry: Mathematical Foundations and Application. John Wiley & Sons (1990). 
MR 1102677[6] Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W.: 
Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity. 23 (2010), 1185-1197. 
DOI 10.1088/0951-7715/23/5/009 | 
MR 2630097[7] Galambos, J.: 
Reprentations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). 
MR 0568141[9] Jager, H., Vroedt, C. De: 
Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. 
MR 0238793 | 
Zbl 0167.32201[12] Šalát, T.: 
Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522. 
MR 0229605[13] Schweiger, F.: 
Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford, Clarendon Press (1995). 
MR 1419320 | 
Zbl 0819.11027