Previous |  Up |  Next

Article

Keywords:
lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable
Summary:
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma$-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma$-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma$-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.
References:
[1] Busch, P., Lahti, P. J., Mittelstaedt, P.: The Quantum Theory of Measurement. Lecture Notes in Phys., Springer-Verlag, Berlin 1991. MR 1176754
[2] Butnariu, D., Klement, E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143. DOI 10.1016/0022-247X(91)90181-X | MR 1135265 | Zbl 0751.60003
[3] Barbieri, G., Weber, H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. MR 1954632 | Zbl 1019.28009
[4] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht 2000. MR 1786097
[5] Chang, C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 89 (1959), 74–80. MR 0094302
[6] Chovanec, F., Kôpka, F.: D-lattices. Internat. J. Thoer. Phys. 34 (1995), 1297–1302. DOI 10.1007/BF00676241 | MR 1353674
[7] Dvurečenskij, A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser A 68 (2000), 261–277. DOI 10.1017/S1446788700001993 | MR 1738040
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. MR 1861369
[9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. MR 1304942
[10] Foulis, D. J.: Spectral resolutions in a Rickart comgroup. Rep. Math. Phys. 54 (2004), 229–250. DOI 10.1016/S0034-4877(04)80016-8 | MR 2107868
[11] Giuntini, R., Greuling, R.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931–945. DOI 10.1007/BF01889307 | MR 1013913
[12] Goodearl, K. R.: Partially ordered abelian groups with interpolation. Mat. Surveys Monographs 20, AMS Providence, 1986. MR 0845783 | Zbl 0589.06008
[13] Holevo, A. S.: An analogue of the theory of statistical decisions in noncommutative probability theory. Trans. Mosc. Math. Soc. 26 (1972), 133–147. MR 0365809
[14] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. Busefal 80 (1999), 24–29.
[15] Jenčová, A., Pulmannová, S., Vinceková, E.: Sharp and fuzzy observables on effect algebras. Internat. J. Theor. Phys. 47 (2008), 1, 125–148. DOI 10.1007/s10773-007-9396-0 | Zbl 1139.81006
[16] Jenčová, A., Pulmannová, S.: How sharp are PV measures? Rep. Math. Phys. 59 (2007), 257–266. DOI 10.1016/S0034-4877(07)80038-3 | MR 2340197
[17] Jenčová, A., Pulmannová, S.: Characterizations of commutative POV measures. Found. Phys. 39 (2009), 613–124. DOI 10.1007/s10701-009-9273-1 | MR 2548410 | Zbl 1204.81068
[18] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. MR 1290269
[19] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[20] Mundici, D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248. DOI 10.1006/aama.1998.0631 | MR 1659410 | Zbl 0926.06004
[21] Mundici, D.: Averaging the truth-value in in Łukasziewicz logic. Studia Logica 55 (1995), 113–127. DOI 10.1007/BF01053035 | MR 1348840
[22] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht 1991. MR 1176314
[23] Pulmannová, S.: A spectral theorem for sigma-MV algebas. Kybernetika 41 (2005), 361–374.
[24] Pulmannová, S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. 309 (2005), 322–335. DOI 10.1016/j.jmaa.2005.01.044 | MR 2154046 | Zbl 1072.06014
[25] Pulmannová, S.: Spectral resolutions for $\sigma $-complete lattice effect algebras. Math. Slovaca 56 (2006), 555–571. MR 2293587 | Zbl 1141.81007
[26] Pulmannová, S.: Sharp and unsharp observables on $\sigma $-MV algebras—A comparison with the Hilbert space approach. Fuzzy Sets and Systems 159 (2008), 3065–3077. MR 2457564 | Zbl 1174.06013
[27] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer, Dordrecht – Ister Science, Bratislava 1997. MR 1489521
[28] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237. DOI 10.1023/A:1003619806024 | MR 1762594
[29] Štepán, J.: Probability Theory. (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987.
[30] Strasser, H.: Mathematical Theory of Statistics. W. De Gruyter, Berlin – New York 1985. MR 0812467 | Zbl 0594.62017
[31] Varadarajan, V. S.: Geometry of Quantum Theory. Springer-Verlag, Berlin 1985. MR 0805158 | Zbl 0581.46061
Partner of
EuDML logo