Previous |  Up |  Next

Article

Keywords:
regularly varying functions; $q$-difference equations; asymptotic behavior; oscillation
Summary:
The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^{\mathbb {N}_0}:=\{q^k\colon k\in \mathbb {N}_0\}$ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\to \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash {q^{\mathbb {N}_0}}\to \mathbb {R}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.
References:
[1] Adams, C. R.: On the linear ordinary $q$-difference equation. Ann. of Math. 30 (1928/29), 195-205. DOI 10.2307/1968274 | MR 1502876
[2] Bangerezako, G.: An Introduction to $q$-Difference Equations. Preprint, Bujumbura (2007).
[3] Baoguo, J., Erbe, L., Peterson, A. C.: Oscillation of a family of $q$-difference equations. Appl. Math. Lett. 22 (2009), 871-875. DOI 10.1016/j.aml.2008.07.014 | MR 2523597 | Zbl 1170.39002
[4] Bekker, M. B., Bohner, M. J., Herega, A. N., Voulov, H.: Spectral analysis of a $q$-difference operator. J. Phys. A, Math. Theor. 43 (2010), 15 pp. DOI 10.1088/1751-8113/43/14/145207 | MR 2606438 | Zbl 1192.39006
[5] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation. Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press (1989). MR 1015093 | Zbl 0667.26003
[6] Birkhoff, G. D., Guenther, P. E.: Note on a canonical form for the linear $q$-difference system. Proc. Natl. Acad. Sci. USA 27 (1941), 218-222. DOI 10.1073/pnas.27.4.218 | MR 0004047 | Zbl 0061.20002
[7] Bohner, M., Peterson, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001). MR 1843232 | Zbl 0978.39001
[8] Bohner, M., Ünal, M.: Kneser's theorem in $q$-calculus. J. Phys. A, Math. Gen. 38 (2005), 6729-6739. DOI 10.1088/0305-4470/38/30/008 | MR 2167223 | Zbl 1080.39023
[9] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences. Math. Z. 134 (1973), 91-106. DOI 10.1007/BF01214468 | MR 0333082
[10] Carmichael, R. D.: The general theory of linear $q$-difference equations. Amer. J. Math. 34 (1912), 147-168. DOI 10.2307/2369887 | MR 1506145
[11] Cheung, P., Kac, V.: Quantum Calculus. Springer-Verlag, Berlin-Heidelberg-New York (2002). MR 1865777 | Zbl 0986.05001
[12] Vizio, L. Di, Ramis, J.-P., Sauloy, J., Zhang, C.: Équations aux $q$-différences. Gaz. Math., Soc. Math. Fr. 96 (2003), 20-49. MR 1988639 | Zbl 1063.39015
[13] Ernst, T.: The different tongues of $q$-calculus. Proc. Est. Acad. Sci. 57 (2008), 81-99. DOI 10.3176/proc.2008.2.03 | MR 2554406 | Zbl 1161.33302
[14] Galambos, J., Seneta, E.: Regularly varying sequences. Proc. Amer. Math. Soc. 41 (1973), 110-116. DOI 10.1090/S0002-9939-1973-0323963-5 | MR 0323963 | Zbl 0247.26002
[15] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press (2004). MR 2128719 | Zbl 1129.33005
[16] Jackson, F. H.: $q$-difference equations. Amer. J. Math. 32 (1910), 305-314. DOI 10.2307/2370183 | MR 1506108
[17] Karamata, J.: Sur certain ``Tauberian theorems'' de M. M. Hardy et Littlewood. Mathematica Cluj 3 (1930), 33-48.
[18] Koornwinder, T. H.: q-Special Functions, A Tutorial, Representations of Lie groups and quantum groups. V. Baldoni and M. A. Picardello Longman Scientific and Technical (1994), 46-128. MR 1431306
[19] Caine, J. Le: The linear $q$-difference equation of the second order. Am. J. Math. 65 (1943), 585-600. DOI 10.2307/2371867 | MR 0008889 | Zbl 0061.20003
[20] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Mathematics. 1726, Springer-Verlag, Berlin-Heidelberg-New York (2000). MR 1753584
[21] Matucci, S., Řehák, P.: Regularly varying sequences and second order difference equations. J. Difference Equ. Appl. 14 (2008), 17-30. DOI 10.1080/10236190701466728 | MR 2378889
[22] Řehák, P.: How the constants in Hille-Nehari theorems depend on time scales. Adv. Difference Equ. 2006 (2006), 1-15. MR 2255171
[23] Řehák, P.: Regular variation on time scales and dynamic equations. Aust. J. Math. Anal. Appl. 5 (2008), 1-10. MR 2461676
[24] Řehák, P., Vítovec, J.: $q$-regular variation and $q$-difference equations. J. Phys. A, Math. Theor. 41 (2008), 1-10. DOI 10.1088/1751-8113/41/49/495203 | MR 2515897
[25] Řehák, P., Vítovec, J.: Regular variation on measure chains. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Method. 72 (2010), 439-448. DOI 10.1016/j.na.2009.06.078 | MR 2574953
[26] Řehák, P., Vítovec, J.: $q$-Karamata functions and second order $q$-difference equations. Electron. J. Qual. Theory Differ. Equ. 24 (2011), 20 pp. MR 2786478
[27] Seneta, E.: Regularly Varying Functions. Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New York (1976). MR 0453936 | Zbl 0324.26002
[28] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York (1968). MR 0463570 | Zbl 0191.09904
[29] Trjitzinsky, W. J.: Analytic theory of linear $q$-difference equations. Acta Math. 61 (1933), 1-38. DOI 10.1007/BF02547785 | MR 1555369 | Zbl 0007.21103
[30] Put, M. van der, Reversat, M.: Galois theory of $q$-difference equations. Ann. Fac. Sci. Toulouse, Math. (6) 16 (2007), 665-718. DOI 10.5802/afst.1164 | MR 2379057
Partner of
EuDML logo