Previous |  Up |  Next

Article

Keywords:
prime and semiprime rings; ideal; derivation; GPIs
Summary:
Let $R$ be a prime ring, $I$ a nonzero ideal of $R$, $d$ a derivation of $R$ and $m, n$ fixed positive integers. (i) If $(d[x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is commutative. (ii) If $\mathop {\rm Char}R\neq 2$ and $[d(x),d(y)]_{m}=[x,y]^{n}$ for all $x,y\in I$, then $R$ is commutative. Moreover, we also examine the case when $R$ is a semiprime ring.
References:
[1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics, Marcel Dekker 196, New York (1996). MR 1368853
[2] Bell, H. E., Daif, M. N.: On derivations and commutativity in prime rings. Acta Math. Hung. 66 (1995), 337-343. DOI 10.1007/BF01876049 | MR 1314011 | Zbl 0822.16033
[3] Bell, H. E., Daif, M. N.: On commutativity and strong commutativity-preserving maps. Can. Math. Bull. 37 (1994), 443-447. DOI 10.4153/CMB-1994-064-x | MR 1303669 | Zbl 0820.16031
[4] Chuang, Ch.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. DOI 10.1090/S0002-9939-1988-0947646-4 | MR 0947646 | Zbl 0656.16006
[5] Chuang, Ch.-L.: Hypercentral derivations. J. Algebra 166 (1994), 34-71. DOI 10.1006/jabr.1994.1140 | MR 1276816 | Zbl 0805.16035
[6] Lanski, Ch.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. DOI 10.1090/S0002-9939-1993-1132851-9 | MR 1132851 | Zbl 0821.16037
[7] Daif, M. N., Bell, H. E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15 (1992), 205-206. DOI 10.1155/S0161171292000255 | MR 1143947 | Zbl 0746.16029
[8] Dhara, B., Sharma, R. K.: Vanishing power values of commutators with derivations. Sib. Math. J. 50 (2009), 60-65. DOI 10.1007/s11202-009-0007-6 | MR 2502875 | Zbl 1205.16032
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. DOI 10.2140/pjm.1975.60.49 | MR 0382379
[10] Herstein, I. N.: Center-like elements in prime rings. J. Algebra 60 (1979), 567-574. DOI 10.1016/0021-8693(79)90102-9 | MR 0549949 | Zbl 0436.16014
[11] Jacobson, N.: Structure of Rings. Colloquium Publications 37, Am. Math. Soc. VII, Provindence, RI (1956). MR 0081264 | Zbl 0073.02002
[12] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168. DOI 10.1007/BF01670115 | MR 0541758
[13] Lin, J.-S., Liu, Ch.-K.: Strong commutativity preserving maps on Lie ideals. Linear Algebra Appl. 428 (2008), 1601-1609. MR 2388643 | Zbl 1141.16021
[14] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. MR 1166215 | Zbl 0769.16017
[15] Mayne, J. H.: Centralizing mappings of prime rings. Can. Math. Bull. 27 (1984), 122-126. DOI 10.4153/CMB-1984-018-2 | MR 0725261 | Zbl 0537.16029
[16] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. DOI 10.1016/0021-8693(69)90029-5 | MR 0238897
[17] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100. DOI 10.1090/S0002-9939-1957-0095863-0 | MR 0095863 | Zbl 0082.03003
Partner of
EuDML logo