Previous |  Up |  Next

Article

Keywords:
natural operator; linear connection; torsion; reduction theorem; graph
Summary:
This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
References:
[1] Janyška, J.: Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), 177. DOI 10.1016/j.difgeo.2003.10.006 | MR 2038554 | Zbl 1108.53016
[2] Janyška, J., Markl, M.: Combinatorial differential geometry and ideal Bianchi–Ricci identities. Adv. Geom. 11 (3) (2011), 509–540. DOI 10.1515/advgeom.2011.017 | MR 2817591 | Zbl 1220.53019
[3] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. MR 1202431 | Zbl 0782.53013
[4] Krupka, D., Janyška, J.: Lectures on differential invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990. MR 1108622 | Zbl 0752.53004
[5] Łubczonok, G.: On reduction theorems. Ann. Polon. Math. 26 (1972), 125–133. MR 0307078
[6] Mac Lane, S.: Homology. Springer–Verlag, 1963.
[7] Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16 (2004), 129–160. DOI 10.1515/form.2004.002 | MR 2034546 | Zbl 1067.55011
[8] Markl, M.: ${GL_n}$–invariant tensors and graphs. Arch. Math. (Brno) 44 (2008), 339–353. MR 2501578 | Zbl 1212.15051
[9] Markl, M.: Natural differential operators and graph complexes. Differential Geom. Appl. 27 (2009), 257–278. DOI 10.1016/j.difgeo.2008.10.008 | MR 2503978 | Zbl 1165.51005
[10] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. MR 1898414 | Zbl 1017.18001
[11] Markl, M., Voronov, A. A.: PROPped up graph cohomology. Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281. MR 2641192 | Zbl 1208.18008
[12] Nijenhuis, A.: Theory of the geometric object. Thesis, University of Amsterdam (1952). MR 0050364 | Zbl 0049.22903
[13] Nijenhuis, A.: Natural bundles and their general properties. Geometric objects revisited. Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334. MR 0380862 | Zbl 0246.53018
[14] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, 1963. MR 0152974
[15] Schouten, J. A.: Ricci calculus. Berlin–Göttingen, 1954. Zbl 0057.37803
[16] Terng, C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. DOI 10.2307/2373910 | MR 0509074 | Zbl 0422.58001
[17] Veblen, O.: Invariants of quadratic differential forms. Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927.
Partner of
EuDML logo