Previous |  Up |  Next

Article

Keywords:
prime graph; simple group; recognition; quasirecognition
Summary:
Let $G$ be a finite group. The prime graph of $G$ is a graph whose vertex set is the set of prime divisors of $|G|$ and two distinct primes $p$ and $q$ are joined by an edge, whenever $G$ contains an element of order $pq$. The prime graph of $G$ is denoted by $\Gamma (G)$. It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if $G$ is a finite group such that $\Gamma (G)=\Gamma (B_{n}(5))$, where $n\geq 6$, then $G$ has a unique nonabelian composition factor isomorphic to $B_{n}(5)$ or $C_{n}(5)$.
References:
[1] Akhlaghi, Z., Khatami, M., Khosravi, B.: Quasirecognition by prime graph of the simple group $^2F_4(q)$. Acta Math. Hung. 122 (2009), 387-397. DOI 10.1007/s10474-009-8048-7 | MR 2481788
[2] Akhlaghi, Z., Khosravi, B., Khatami, M.: Characterization by prime graph of $ PGL(2,p^k)$ where $p$ and $k>1$ are odd. Int. J. Algebra Comput. 20 (2010), 847-873. DOI 10.1142/S021819671000587X | MR 2738548
[3] Babai, A., Khosravi, B., Hasani, N.: Quasirecognition by prime graph of $^2D_p(3)$ where $p=2^n+1\geq5$ is a prime. Bull. Malays. Math. Sci. Soc. 32 (2009), 343-350. MR 2562173
[4] Babai, A., Khosravi, B.: Recognition by prime graph of $^2D_{2^m+1}(3)$. Sib. Math. J. 52 (2011), 993-1003. DOI 10.1134/S003744661105003X | MR 2908121
[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Clarendon Press Oxford (1985). MR 0827219 | Zbl 0568.20001
[6] Guralnick, R. M., Tiep, P. H.: Finite simple unisingular groups of Lie type. J. Group Theory 6 (2003), 271-310. DOI 10.1515/jgth.2003.020 | MR 1983368 | Zbl 1046.20013
[7] Hagie, M.: The prime graph of a sporadic simple group. Comm. Algebra 31 (2003), 4405-4424. DOI 10.1081/AGB-120022800 | MR 1995543 | Zbl 1031.20009
[8] He, H., Shi, W.: Recognition of some finite simple groups of type $D_n(q)$ by spectrum. Int. J. Algebra Comput. 19 (2009), 681-698. DOI 10.1142/S0218196709005299 | MR 2547064 | Zbl 1182.20016
[9] Khatami, M., Khosravi, B., Akhlaghi, Z.: NCF-distinguishability by prime graph of $PGL(2,p)$, where $p$ is a prime. Rocky Mt. J. Math. 41 (2011), 1523-1545. MR 2838076
[10] Khosravi, B., Babai, A.: Quasirecognition by prime graph of $F_{4}(q)$ where $q=2^n>2$. Monatsh. Math. 162 (2011), 289-296. DOI 10.1007/s00605-009-0155-6 | MR 2775847
[11] Khosravi, A., Khosravi, B.: Quasirecognition by prime graph of the simple group $^2G_{2}(q)$. Sib. Math. J. 48 (2007), 570-577. DOI 10.1007/s11202-007-0059-4 | MR 2347918
[12] Khosravi, B., Khosravi, A.: $2$-recognizability by the prime graph of $ PSL(2,p^2)$. Sib. Math. J. 49 (2008), 749-757. DOI 10.1007/s11202-008-0072-2 | MR 2456703
[13] Khosravi, B., Khosravi, B., Khosravi, B.: Groups with the same prime graph as a CIT simple group. Houston J. Math. 33 (2007), 967-977. MR 2350073 | Zbl 1133.20008
[14] Khosravi, B., Khosravi, B., Khosravi, B.: On the prime graph of $ PSL(2, p)$ where $p>3$ is a prime number. Acta Math. Hung. 116 (2007), 295-307. DOI 10.1007/s10474-007-6021-x | MR 2335801
[15] Khosravi, B., Khosravi, B., Khosravi, B.: A characterization of the finite simple group $L_{16}(2)$ by its prime graph. Manuscr. Math. 126 (2008), 49-58. DOI 10.1007/s00229-007-0160-9 | MR 2395248 | Zbl 1143.20009
[16] Khosravi, B.: Quasirecognition by prime graph of $L_{10}(2)$. Sib. Math. J. 50 (2009), 355-359. DOI 10.1007/s11202-009-0040-5 | MR 2531768 | Zbl 1212.20047
[17] Khosravi, B.: Some characterizations of $L_{9}(2)$ related to its prime graph. Publ. Math. 75 (2009), 375-385. MR 2588212 | Zbl 1207.20008
[18] Khosravi, B.: $n$-recognition by prime graph of the simple group $ PSL(2,q)$. J. Algebra Appl. 7 (2008), 735-748. DOI 10.1142/S0219498808003090 | MR 2483329
[19] Khosravi, B., Moradi, H.: Quasirecognition by prime graph of finite simple groups $L_n(2)$ and $U_n(2)$. Acta. Math. Hung. 132 (2011), 140-153. DOI 10.1007/s10474-010-0053-3 | MR 2805484 | Zbl 1232.20020
[20] Mazurov, V. D.: Characterizations of finite groups by the set of orders of their elements. Algebra Logic 36 (1997), 23-32. DOI 10.1007/BF02671951 | MR 1454690
[21] Sierpiński, W.: Elementary Theory of Numbers (Monografie Matematyczne Vol. 42). Państwowe Wydawnictwo Naukowe Warsaw (1964). MR 0175840
[22] Stensholt, E.: Certain embeddings among finite groups of Lie type. J. Algebra 53 (1978), 136-187. DOI 10.1016/0021-8693(78)90211-9 | MR 0486182 | Zbl 0386.20006
[23] Vasil'ev, A. V., Vdovin, E. P.: An adjacency criterion in the prime graph of a finite simple group. Algebra Logic 44 (2005), 381-405. DOI 10.1007/s10469-005-0037-5 | MR 2213302
[24] Vasil'ev, A. V., Vdovin, E. P.: Cocliques of maximal size in the prime graph of a finite simple group. http://arxiv.org/abs/0905.1164v1 \MR 2893582. MR 2893582
[25] Vasil'ev, A. V., Gorshkov, I. B.: On the recognition of finite simple groups with a connected prime graph. Sib. Math. J. 50 (2009), 233-238. DOI 10.1007/s11202-009-0027-2 | MR 2531755
[26] Vasil'ev, A. V., Grechkoseeva, M. A.: On recognition of the finite simple orthogonal groups of dimension $2^m$, $2^m+1$, and $2^m+2$ over a field of characteristic 2. Sib. Math. J. 45 (2004), 420-431. DOI 10.1023/B:SIMJ.0000028607.23176.5f | MR 2078712
[27] Zavarnitsin, A. V.: On the recognition of finite groups by the prime graph. Algebra Logic 43 (2006), 220-231. DOI 10.1007/s10469-006-0020-9 | MR 2287647
[28] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284 German. DOI 10.1007/BF01692444 | MR 1546236
Partner of
EuDML logo