Previous |  Up |  Next

Article

MSC: 03G10, 06A12, 06D50
Keywords:
distributive semilattices; topological representation; meet-relations
Summary:
In this paper we shall give a survey of the most important characterizations of the notion of distributivity in semilattices with greatest element and we will present some new ones through annihilators and relative maximal filters. We shall also simplify the topological representation for distributive semilattices given in Celani S.A., Topological representation of distributive semilattices, Sci. Math. Japonicae online 8 (2003), 41--51, and show that the meet-relations are closed under composition. So, we obtain that the $DS$-spaces with meet-relations is a category dual to the category of distributive semilattices with homomorphisms. These results complete the topological representation presented in Celani S.A., Topological representation of distributive semilattices, Sci. Math. Japonicae online 8 (2003), 41--51, without the use of ordered topological spaces. Finally, following the work of G. Bezhanishvili and R. Jansana in Generalized Priestley quasi-orders, Order 28 (2011), 201--220, we will prove a characterization of homomorphic images of a distributive semilattice $A$ by means of family of closed subsets of the dual space endowed with a lower Vietoris topology.
References:
[1] Balbes R.: A representation theory for prime and implicative semilattices. Trans. Amer. Math. Soc. 136 (1969), 261–267. DOI 10.1090/S0002-9947-1969-0233741-7 | MR 0233741 | Zbl 0175.01402
[2] Bezhanishvili G., Jansana R.: Priestley style duality for distributive meet-semilattices. Studia Logica 98 (2011), 83–122. DOI 10.1007/s11225-011-9323-5 | MR 2821271 | Zbl 1238.03050
[3] Bezhanishvili G., Jansana R.: Generalized Priestley quasi-orders. Order 28 (2011), 201–220. DOI 10.1007/s11083-010-9166-0 | MR 2819220 | Zbl 1243.06003
[4] Celani S.A.: Topological representation of distributive semilattices. Sci. Math. Japonicae online 8 (2003), 41–51. MR 1987817 | Zbl 1041.06002
[5] Chajda I., Halaš R., Kühr J.: Semilattice Structures. Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR 2326262
[6] Cornish W.H., Hickman R.C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hungar. 32 (1978), 5–16. DOI 10.1007/BF01902195 | MR 0551490 | Zbl 0497.06005
[7] Grätzer G.: General Lattice Theory. Birkhäuser, Basel, 1998. MR 1670580
[8] Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003. MR 1975381 | Zbl 1088.06001
[9] Hickman R.C.: Mildly distributive semilattices. J. Austral. Math. Soc. Ser. A 36 (1984), 287–315. DOI 10.1017/S1446788700025374 | MR 0733904 | Zbl 0537.06006
[10] Mandelker M.: Relative annihilators in lattices. Duke Math. J. 37 (1970), 377–386. DOI 10.1215/S0012-7094-70-03748-8 | MR 0256951 | Zbl 0206.29701
[11] Priestley H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. DOI 10.1112/blms/2.2.186 | MR 0265242 | Zbl 0201.01802
[12] Rhodes J.B.: Modular and distributive semilattices. Trans. Amer. Math. Soc. 201 (1975), 31–41. DOI 10.1090/S0002-9947-1975-0351935-X | MR 0351935 | Zbl 0326.06006
[13] Stone M.: Topological representation of distributive lattices and Brouwerian logics. Časopis pěst. mat. fys. 67 (1937), 1–25.
[14] Varlet J.C.: A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. MR 0228390 | Zbl 0162.03501
[15] Varlet J.C.: Distributive semilattices and Boolean lattices. Bull. Soc. Roy. Liège 41 (1972), 5–10. MR 0307991 | Zbl 0302.06025
[16] Varlet J.C.: Relative annihilators in semilattices. Bull. Austral. Math. Soc. 9 (1973), 169–185. DOI 10.1017/S0004972700043094 | MR 0382091 | Zbl 0258.06009
[17] Varlet J.C.: On separation properties in semilattices. Semigroup Forum 10 (1975), 220–228. DOI 10.1007/BF02194889 | MR 0384627 | Zbl 0299.06002
Partner of
EuDML logo