Previous |  Up |  Next

Article

Keywords:
elliptic curve; integral point; quadratic diophantine equation
Summary:
Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
References:
[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. DOI 10.1112/jlms/s1-43.1.1 | MR 0231783 | Zbl 0157.09801
[2] He, Y., Zhang, W.: An elliptic curve having large integral points. Czech. Math. J. 60 (2010), 1101-1107. DOI 10.1007/s10587-010-0075-6 | MR 2738972 | Zbl 1224.11051
[3] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). MR 0249355 | Zbl 0188.34503
[4] Petr, K.: On Pell's equation. Čas. Mat. Fys. 56 (1927), Czech, French abstract 57-66.
[5] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: Reflections and an improvement. Exp. Math. 8 (1999), 135-149. DOI 10.1080/10586458.1999.10504395 | MR 1700575 | Zbl 0979.11060
[6] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation. Math. Comput. 72 (2003), 1917-1933. DOI 10.1090/S0025-5718-03-01497-2 | MR 1986812 | Zbl 1089.11019
[7] Togbé, A., Voutier, P. M., Walsh, P. G.: Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$. Acta Arith. 120 (2005), 39-58. MR 2189717
[8] Walker, D. T.: On the Diophantine equation $mX^2-nY^2=\pm1$. Am. Math. Mon. 74 (1967), 504-513. DOI 10.1080/00029890.1967.11999992 | MR 0211954
[9] Walsh, P. G.: A note on a theorem of Ljunggren and the diophantine equations $x^2-kxy^2+y^4=1,4$. Arch. Math. 73 (1999), 119-125. DOI 10.1007/s000130050376 | MR 1703679
[10] Zagier, D.: Large integral points on elliptic curves. Math. Comput. 48 (1987), 425-436. DOI 10.1090/S0025-5718-1987-0866125-3 | MR 0866125 | Zbl 0611.10008
[11] Zhu, H., Chen, J.: Integral points on $y^2=x^3+27x-62$. J. Math. Study 42 (2009), 117-125. MR 2541721
Partner of
EuDML logo