Previous |  Up |  Next

Article

Keywords:
Jordan algebra (triple system, pair); associative algebra (triple systems, pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap, groud, principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry
Summary:
In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries.
References:
[1] Berger, M.: Les espaces symétriques non–compacts. Ann. Sci. ENS (1957). Zbl 0093.35602
[2] Bertram, W.: Jordan geometries by inversions. Preprint, 2013, http://arxiv.org/abs/1308.5888
[3] Bertram, W.: The projective geometry of a group. arXiv: math.GR/1201.6201.
[4] Bertram, W.: The Geometry of Jordan and Lie Structures. Lecture Notes in Math., vol. 1754, Springer, Berlin, 2000. DOI 10.1007/b76884 | Zbl 1014.17024
[5] Bertram, W.: Generalized projective geometries: General theory and equivalence with Jordan structures. Advances in Geometry 3 (2002), 329–369. MR 1940443
[6] Bertram, W.: The geometry of null systems, Jordan algebras and von Staudt’s Theorem. Ann. Inst. Fourier 53 fasc. 1 (2003), 193–225. DOI 10.5802/aif.1942 | MR 1973071 | Zbl 1038.17023
[7] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Mem. Amer. Math. Soc. 192 (900) (2008), x+202, arXiv: math.DG/0502168. MR 2369581 | Zbl 1144.58002
[8] Bertram, W.: Homotopes and conformal deformations of symmetric spaces. J. Lie Theory 18 (2008), 301–333, math.RA/0606449. MR 2431118 | Zbl 1164.17021
[9] Bertram, W.: Is there a Jordan geometry underlying quantum physics?. Int. J. Theor. Phys. 47 (2) (2008), 2754—2782, arXiv: math-ph/0801.3069. DOI 10.1007/s10773-008-9724-z | MR 2475762 | Zbl 1160.81398
[10] Bertram, W.: On the Hermitian projective line as a home for the geometry of Quantum Theory. AIP Conference Proceedings 1079, p. 14–25 (XXVII Workshop on Geometrical Methods in Physics, Bialowieza 2008), American Institute of Physics, New York, 2008. MR 2757694 | Zbl 1167.81394
[11] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. I : Construction by algebras with two involutions. arXiv: math.DG/1011.2923.
[12] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. II : Structure Variety and Classification. arXiv: math.DG/1011.3161.
[13] Bertram, W., Glöckner, H., Neeb, K.–H.: Differential calculus over general base fields and rings. Exposition. Math. 22 (2004), 213–282, arXiv: math.GM/030330. DOI 10.1016/S0723-0869(04)80006-9 | MR 2069671 | Zbl 1099.58006
[14] Bertram, W., Kinyon, M.: Associative geometries. I: Torsors, linear relations and grassmannians. J. Lie Theory 20 (2) (2010), 215–252, arXiv: math.RA/0903.5441. MR 2681368 | Zbl 1206.20074
[15] Bertram, W., Kinyon, M.: Associative geometries. II: Involutions, the classical torsors, and their homotopes. J. Lie Theory 20 (2) (2010), 253–282, arXiv: math.RA/0909.4438. MR 2681369 | Zbl 1206.20075
[16] Bertram, W., Neeb, K.–H.: Projective completions of Jordan pairs. I: The generalized projective geometry of a Lie algebra. J. Algebra 277 (2) (2004), 193–225, arXiv: math.RA/0306272. MR 2067615 | Zbl 1100.17012
[17] Bertram, W., Neeb, K.–H.: Projective completions of Jordan pairs. Part II: Manifold structures and symmetric spaces (avec K.-H. Neeb). vec K.-H. Neeb), Geom. Dedicata 112 (1) (2005), 73–113, arXiv: math.GR/0401236. DOI 10.1007/s10711-004-4197-6 | MR 2163891
[18] Chenal, J.: Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension. C. R. Math. Acad. Sci. Paris 347 (2009), 21–25, arXiv: 1007.4076v1 [math.RA]. DOI 10.1016/j.crma.2008.12.001 | MR 2536743
[19] Chu, Ch.–H.: Jordan Structures in Geometry and Analysis. Cambridge University Press, 2012. MR 2885059 | Zbl 1238.17001
[20] Connes, A.: Non–commutative Geometry. Academic Press, 1994.
[21] Emch, G.: Mathematical and Conceptual Foundations of 20th Century Physics. North Holland, 1985.
[22] Faraut, J., Koranyi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford, 1994. Zbl 0841.43002
[23] Grgin, E., Petersen, A.: Algebraic implications of composability of physical systems. Comm. Math. Phys. 50 (1976), 177–188. DOI 10.1007/BF01617995 | Zbl 0358.17005
[24] Jordan archive. Jordan preprint server) http://molle.fernuni-hagen.de/~loos/jordan/index.html
[25] Kaneyuki, S.: On classification of parahermitian symmetric spaces. Tokyo J. Math. 8 (1985), 473–482. DOI 10.3836/tjm/1270151228 | Zbl 0592.53042
[26] Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications (reprint). eprint), Lecture Notes in Mat., vol. 1710, Springer, Berlin, 1999.
[27] Koufany, K.: Réalisation des espaces symétriques de type Cayley. C. R. Math. Acad. Sci. Paris 318 (1994), 425–428. Zbl 0839.53035
[28] Loos, O.: Symmetric Spaces I. Benjamin, New York, 1969. Zbl 0175.48601
[29] Loos, O.: Jordan triple systems, R-spaces and bounded symmetric domains. Bull. Amer. Math. Soc. 77 (1971), 558–561. DOI 10.1090/S0002-9904-1971-12753-2 | Zbl 0228.32012
[30] Loos, O.: Jordan Pairs. Lecture Notes in Math., vol. 460, Springer, Berlin, 1975. Zbl 0301.17003
[31] Loos, O.: Bounded Symmetric Domains and Jordan Pairs. University of California, Irvine, 1977, [See http://molle.fernuni-hagen.de/~loos/jordan/index.html]
[32] Loos, O.: Charakterisierung symmetrischer $R$–Räume durch ihre Einheitsgitter. Math. Z. 189 (1985), 211–226. DOI 10.1007/BF01175045 | Zbl 0583.53044
[33] McCrimmon, K.: A Taste of Jordan Algebras. Springer-Verlag, New York, 2004. MR 2014924 | Zbl 1044.17001
[34] Nagano, Tadashi: Transformation groups on compact symmetric spaces. Trans. Amer. Math. Soc. 118 (1965), 428–453. DOI 10.1090/S0002-9947-1965-0182937-8
[35] Springer, T. A.: Jordan Algebras and Algebraic Groups. Classics in Mathematics, Springer-Verlag, 1998, Reprint of the 1973 edition. Zbl 1024.17018
[36] Takeuchi, Masaru: Cell decompositions and Morse equalities on certain symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81–192.
[37] Upmeier, H.: Symmetric Banach Manifolds and Jordan $C^*$-algebras. North-Holland Math. Stud., North-Holland Publishing Co., Amsterdam, 1985.
[38] Upmeier, H.: Jordan algebras in analysis, operator theory, and quantum mechanics. CBMS Regional Conference Series in Mathematics, 67. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1987.
Partner of
EuDML logo