Previous |  Up |  Next

Article

Keywords:
pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences
Summary:
Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
References:
[1] Adams, M.: Principal congruences in De Morgan algebras. Proc. Edinb. Math. Soc. 30 (1987), 415–421. DOI 10.1017/S0013091500026808 | MR 0908448 | Zbl 0595.06013
[2] Balbes, R., Dwinger, Ph.: Distributive Lattices. Univ. of Missouri Press, Columbia, 1974. MR 0373985 | Zbl 0321.06012
[3] Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Col. Pub., 25, 3rd ed., Providence, 1967. MR 0227053 | Zbl 0153.02501
[4] Blok, W., Köler, P., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences II. Algebra Universalis 18 (1984), 334–379. DOI 10.1007/BF01203370 | MR 0745497
[5] Blok, W., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences I. Algebra Universalis 15 (1982), 195–227. DOI 10.1007/BF02483723 | MR 0686803 | Zbl 0512.08002
[6] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz–Moisil Algebras. North–Holland, Amsterdam, 1991. MR 1112790 | Zbl 0726.06007
[7] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics, 78, Springer–Verlag, Berlin, 1981. DOI 10.1007/978-1-4613-8130-3_3 | MR 0648287 | Zbl 0478.08001
[8] Cornish, W., Fowler, P.: Coproducts of De Morgan algebras. Bull. Aust. Math. Soc. 16 (1977), 1–13. DOI 10.1017/S0004972700022966 | MR 0434907 | Zbl 0329.06005
[9] Figallo, A. V.: Tópicos sobre álgebras modales $4$-valuadas. In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992), Notas de Lógica Matemática 39 (1992), 145–157. MR 1332541
[10] Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras. Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.
[11] Font, J., Rius, M.: An abstract algebraic logic approach to tetravalent modal logics. J. Symbolic Logic 65 (2000), 481–518. DOI 10.2307/2586552 | MR 1771068 | Zbl 1013.03075
[12] Fried, E., Pixley, A.: The dual discriminator function in universal algebra. Acta Sci. Math. 41 (1979), 83–100. MR 0534502 | Zbl 0395.08001
[13] Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188.
[14] Grätzer, G., Lakser, H.: The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343–358. MR 0274359 | Zbl 0244.06011
[15] Kalman, J.: Lattices with involution. Trans. Amer. Math. Soc. 87 (1958), 485–491. DOI 10.1090/S0002-9947-1958-0095135-X | MR 0095135 | Zbl 0228.06003
[16] Hecht, T., Katriňák, T.: Principal congruences of $p$-algebras and double $p$-algebras. Proc. Amer. Math. Soc. 58 (1976), 25–31. MR 0409293 | Zbl 0352.06006
[17] Loureiro, I.: Axiomatisation et propriétés des algèbres modales tétravalentes. C. R. Math. Acad. Sci. Paris 295, Série I (1982), 555–557. MR 0685023 | Zbl 0516.03010
[18] Loureiro, I.: Algebras Modais Tetravalentes. PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983.
[19] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. DOI 10.1112/blms/2.2.186 | MR 0265242 | Zbl 0201.01802
[20] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. P. London Math. Soc. 24, 3 (1972), 507–530. DOI 10.1112/plms/s3-24.3.507 | MR 0300949 | Zbl 0323.06011
[21] Priestley, H. A.: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 39–60. MR 0779844 | Zbl 0557.06007
[22] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element. Surma Brasil Math. 2 (1949), 43–49. MR 0030931 | Zbl 0040.01003
[23] Romanowska, A.: Subdirectly irreducible pseudocomplemented De Morgan algebras. Algebra Universalis 12 (1981), 70–75. DOI 10.1007/BF02483864 | MR 0608649 | Zbl 0457.06009
[24] Sankappanavar, H.: Pseudocomplemented Okham and Demorgan algebras. Z. Math. Logik Grundlagen Math. 32 (1986), 385–394. DOI 10.1002/malq.19860322502 | MR 0860024
[25] Sankappanavar, H.: Principal congruences of pseudocomplemented Demorgan algebras. Z. Math. Logik Grundlagen Math. 33 (1987), 3–11. DOI 10.1002/malq.19870330102 | MR 0885477 | Zbl 0624.06016
[26] Varlet, J.: Algèbres de Łukasiewicz trivalentes. Bull. Soc. Roy. Liège (1968), 9–10.
[27] Werner, H.: Discriminator–Algebras. Algebraic representation and modal theoretic properties, Akademie–Verlag, Berlin, 1978. MR 0526402 | Zbl 0374.08002
Partner of
EuDML logo