Previous |  Up |  Next

Article

Title: Commutators of the fractional maximal function on variable exponent Lebesgue spaces (English)
Author: Zhang, Pu
Author: Wu, Jianglong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 183-197
Summary lang: English
.
Category: math
.
Summary: Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1< p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)<\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0<{\beta }<n/p_{+}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathscr {B}(\mathbb R^{n})$. (English)
Keyword: commutator
Keyword: BMO
Keyword: fractional maximal function
Keyword: variable exponent Lebesgue space
MSC: 42B25
MSC: 42B30
MSC: 46E30
MSC: 47B47
idZBL: Zbl 06391486
idMR: MR3247454
DOI: 10.1007/s10587-014-0093-x
.
Date available: 2014-09-29T09:51:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143959
.
Reference: [1] Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions.Proc. Am. Math. Soc. (electronic) 128 (2000), 3329-3334. Zbl 0957.42010, MR 1777580, 10.1090/S0002-9939-00-05763-4
Reference: [2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces.Rev. Mat. Iberoam. 23 (2007), 743-770. MR 2414490, 10.4171/RMI/511
Reference: [3] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. (2) 103 (1976), 611-635. Zbl 0326.32011, MR 0412721
Reference: [4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^{p}$ spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. Zbl 1100.42012, MR 2210118
Reference: [5] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $L^{p}$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842
Reference: [6] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657-700. MR 2166733, 10.1016/j.bulsci.2003.10.003
Reference: [7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [8] Huang, A. W., Xu, J. S.: Multilinear singular integrals and commutators in variable exponent Lebesgue spaces.Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 69-77. Zbl 1224.42030, MR 2606534
Reference: [9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization.Anal. Math. 36 (2010), 33-50. Zbl 1224.42025, MR 2606575, 10.1007/s10476-010-0102-8
Reference: [10] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [11] Milman, M., Schonbek, T.: Second order estimates in interpolation theory and applications.Proc. Am. Math. Soc. 110 (1990), 961-969. Zbl 0717.46066, MR 1075187, 10.1090/S0002-9939-1990-1075187-4
Reference: [12] Segovia, C., Torrea, J. L.: Vector-valued commutators and applications.Indiana Univ. Math. J. 38 (1989), 959-971. Zbl 0696.47033, MR 1029684
Reference: [13] Segovia, C., Torrea, J. L.: Higher order commutators for vector-valued Calderón-Zygmund operators.Trans. Am. Math. Soc. 336 (1993), 537-556. Zbl 0799.42009, MR 1074151
Reference: [14] Xu, J. S.: The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent.Czech. Math. J. 57 (2007), 13-27. Zbl 1174.42312, MR 2309945, 10.1007/s10587-007-0040-1
Reference: [15] Zhang, P., Wu, J. L.: Commutators of the fractional maximal functions.Acta Math. Sin., Chin. Ser. 52 (2009), 1235-1238. Zbl 1212.42067, MR 2640953
.

Files

Files Size Format View
CzechMathJ_64-2014-1_17.pdf 284.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo