Previous |  Up |  Next

Article

Title: A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions (English)
Author: Eisner, Jan
Author: Kučera, Milan
Author: Väth, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 1
Year: 2016
Pages: 1-25
Summary lang: English
.
Category: math
.
Summary: Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the classical case without unilateral obstacles. The study is based on a variational approach to a non-variational problem which even after transformation to a variational one has an unusual structure for which usual variational methods do not apply. (English)
Keyword: reaction-diffusion system
Keyword: unilateral condition
Keyword: variational inequality
Keyword: local bifurcation
Keyword: variational approach
Keyword: spatial patterns
Keyword: Turing instability
MSC: 35B32
MSC: 35J50
MSC: 35J57
MSC: 35K57
MSC: 47J20
idZBL: Zbl 06562144
idMR: MR3455165
DOI: 10.1007/s10492-016-0119-9
.
Date available: 2016-01-19T13:56:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144807
.
Reference: [1] Baltaev, J. I., Kučera, M., Väth, M.: A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions.Appl. Math., Praha 57 (2012), 143-165. Zbl 1249.35020, MR 2899729, 10.1007/s10492-012-0010-2
Reference: [2] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047
Reference: [3] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.De Gruyter Series in Nonlinear Analysis and Applications 5 Walter de Gruyter, Berlin (1997). Zbl 0894.35002, MR 1460729
Reference: [4] Edelstein-Keshet, L.: Mathematical Models in Biology.The Random House/Birkhäuser Mathematics Series Random House, New York (1988). Zbl 0674.92001, MR 1010228
Reference: [5] Eisner, J.: Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 46 (2001), 69-90. Zbl 0980.35029, MR 1845578, 10.1016/S0362-546X(99)00446-0
Reference: [6] Eisner, J., Kučera, M.: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Operator Theory and Its Applications Proc. of the Int. Conf., Winnipeg, Canada, 1998 Fields Inst. Commun. 25, American Mathematical Society, Providence 239-256 (2000). Zbl 0969.35019, MR 1759546
Reference: [7] Eisner, J., Kučera, M., Recke, L.: Direction and stability of bifurcation branches for variational inequalities.J. Math. Anal. Appl. 301 (2005), 276-294. Zbl 1058.49005, MR 2105671, 10.1016/j.jmaa.2004.07.021
Reference: [8] Eisner, J., Kučera, M., Recke, L.: Smooth bifurcation branches of solutions for a Signorini problem.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 1853-1877. Zbl 1213.35233, MR 2764386, 10.1016/j.na.2010.10.058
Reference: [9] Eisner, J., Kučera, M., Väth, M.: Global bifurcation of a reaction-diffusion system with inclusions.Z. Anal. Anwend. 28 (2009), 373-409. MR 2550696, 10.4171/ZAA/1390
Reference: [10] Eisner, J., Kučera, M., Väth, M.: Bifurcation points for a reaction-diffusion system with two inequalities.J. Math. Anal. Appl. 365 (2010), 176-194. Zbl 1185.35074, MR 2585089, 10.1016/j.jmaa.2009.10.037
Reference: [11] Eisner, J., Väth, M.: Location of bifurcation points for a reaction-diffusion system with Neumann-Signorini conditions.Adv. Nonlinear Stud. 11 (2011), 809-836. Zbl 1258.35020, MR 2868433, 10.1515/ans-2011-0403
Reference: [12] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980). MR 0558764
Reference: [13] Jones, D. S., Sleeman, B. D.: Differential Equations and Mathematical Biology.Chapman & Hall/CRC Mathematical Biology and Medicine Series Chapman & Hall/CRC, Boca Raton (2003). Zbl 1020.92001, MR 1967145
Reference: [14] Kučera, M.: Stability and bifurcation problems for reaction-diffusion systems with unilateral conditions.Differential Equations and Their Applications Equadiff 6, Proc. 6th Int. Conf. Brno, 1985 Lect. Notes Math. 1192 (1986), 227-234. Zbl 0643.35050, MR 0877129, 10.1007/BFb0076074
Reference: [15] Kučera, M.: Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities.Czech. Math. J. 47 (1997), 469-486. Zbl 0898.35010, MR 1461426, 10.1023/A:1022411501260
Reference: [16] Kučera, M., Recke, L., Eisner, J.: Smooth bifurcation for variational inequalities and reaction-diffusion systems.Progress in Analysis. Vol. I, II Proc. of the 3rd Int. Congress of the Int. Society for Analysis, Its Applications and Computation, Berlin, 2001 World Sci. Publ., River Edge (2003), 1125-1133. MR 2032793
Reference: [17] Kučera, M., Väth, M.: Bifurcation for a reaction-diffusion system with unilateral and {Neumann} boundary conditions.J. Differ. Equations 252 (2012), 2951-2982. Zbl 1237.35013, MR 2871789, 10.1016/j.jde.2011.10.016
Reference: [18] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Bifurcation Theory and Applications in Scientific Disciplines, Pap. Conf., New York, 1977 Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [19] Murray, J. D.: Mathematical Biology.Biomathematics 19 Springer, Berlin (1993). Zbl 0779.92001, MR 1239892
Reference: [20] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem.Computing Methods in Applied Sciences and Engineering V Proc. 5th Int. Symp., Versailles, 1981 North Holland, Amsterdam (1982), 185-204. Zbl 0505.76103, MR 0784643
Reference: [21] Quittner, P.: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. Reine Angew. Math. 380 (1987), 1-13. Zbl 0617.35053, MR 0916198
Reference: [22] Recke, L., Eisner, J., Kučera, M.: Smooth bifurcation for variational inequalities based on the implicit function theorem.J. Math. Anal. Appl. 275 (2002), 615-641. Zbl 1018.34042, MR 1943769, 10.1016/S0022-247X(02)00272-X
Reference: [23] Väth, M.: A disc-cutting theorem and two-dimensional bifurcation of a reaction-diffusion system with inclusions.Cubo 10 (2008), 85-100. Zbl 1169.35352, MR 2467201
Reference: [24] Väth, M.: New beams of global bifurcation points for a reaction-diffusion system with inequalities or inclusions.J. Differ. Equations 247 (2009), 3040-3069. Zbl 1188.35019, MR 2569857, 10.1016/j.jde.2009.09.004
Reference: [25] Väth, M.: Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities.Math. Bohem. 139 (2014), 195-211. Zbl 1340.35145, MR 3238834
Reference: [26] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. III: Variational Methods and Optimization.Springer, New York (1985). Zbl 0583.47051, MR 0768749
Reference: [27] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. IV: Applications to Mathematical Physics.Springer, New York (1988). Zbl 0648.47036, MR 0932255
.

Files

Files Size Format View
AplMat_61-2016-1_1.pdf 362.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo