Previous |  Up |  Next

Article

Keywords:
functionals with linear growth; limit load; truncation method; perfect plasticity
Summary:
The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.
References:
[1] Caboussat, A., Glowinski, R.: Numerical solution of a variational problem arising in stress analysis: the vector case. Discrete Contin. Dyn. Syst. 27 (2010), 1447-1472. DOI 10.3934/dcds.2010.27.1447 | MR 2629532
[2] Cermak, M., Haslinger, J., Kozubek, T., Sysala, S.: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: Part II---numerical realization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348-1371. DOI 10.1002/zamm.201400069 | MR 3434744
[3] Chen, W. F., Liu, X. L.: Limit Analysis in Soil Mechanics. Elsevier (1990).
[4] Christiansen, E.: Limit analysis of collapse states. P. G. Ciarlet Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) North-Holland, Amsterdam 193-312 (1996). MR 1422505
[5] Neto, E. A. de Souza, Perić, D., Owen, D. R. J.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008).
[6] Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Grundlehren der Mathematischen Wissenschaften 339 Springer, Dordrecht (2010). MR 2566897 | Zbl 1213.53002
[7] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics. Grundlehren der Mathematischen Wissenschaften 219 Springer, Berlin (1976). DOI 10.1007/978-3-642-66165-5 | MR 0521262 | Zbl 0331.35002
[8] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Études Mathématiques Dunod; Gauthier-Villars, Paris French (1974). MR 0463993 | Zbl 0281.49001
[9] Finn, R.: Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften 284 Springer, New York (1986). DOI 10.1007/978-1-4613-8584-4 | MR 0816345 | Zbl 0583.35002
[10] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980). MR 0558764
[11] Giusti, E.: Minimal Surfaces and Functions of Bounded Variations. Monographs in Mathematics 80 Birkhäuser, Basel (1984). MR 0775682
[12] Hansbo, P.: A discontinuous finite element method for elasto-plasticity. Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780-789. MR 2642251 | Zbl 1351.74082
[13] Haslinger, J., Repin, S., Sysala, S.: A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting. J. Comput. Appl. Math. 303 (2016), 156-170. DOI 10.1016/j.cam.2016.02.035 | MR 3479280
[14] Johnson, C., Scott, R.: A finite element method for problems in perfect plasticity using discontinuous trial functions. Nonlinear Finite Element Analysis in Structural Mechanics Proc. Europe-U.S. Workshop, Bochum, 1980 W. Wunderlich, et al. Springer, Berlin 307-324 (1981). MR 0631535 | Zbl 0572.73076
[15] Krasnosel'skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45 Pergamon Press, Oxford (1964). MR 0159197
[16] Langbein, D. W.: Capillary Surfaces: Shape, Stability, Dynamics, in Particular under Weightlessness. Springer Tracts in Modern Physics 178 Springer, Berlin (2002). DOI 10.1007/3-540-45267-2 | MR 1991488 | Zbl 1050.76001
[17] Liu, F., Zhao, J.: Limit analysis of slope stability by rigid finite-element method and linear programming considering rotational failure. Int. J. Geomech. 13 (2013), 827-839. DOI 10.1061/(ASCE)GM.1943-5622.0000283
[18] Nitsche, J. C. C.: Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author. Cambridge University Press, Cambridge (2011). MR 1015936
[19] Ramm, E.: Strategies for tracing nonlinear response near limit points. Nonlinear Finite Element Analysis in Structural Mechanics W. Wunderlich Proc. Europe-U.S.Workshop, Bochum, 1980 Springer, Berlin 63-89 (1981).
[20] Repin, S., Seregin, G.: Existence of a weak solution of the minimax problem arising in Coulomb-Mohr plasticity. Nonlinear Evolution Equations Am. Math. Soc. Ser. 2, 164 189-220 (1995), American Mathematical Society, Providence N. N. Uraltseva. DOI 10.1090/trans2/164/09 | MR 1334144 | Zbl 0890.73079
[21] Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton (1970). MR 0274683 | Zbl 0193.18401
[22] Sloan, S. W.: Lower bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Geomech. 12 (1988), 61-77. DOI 10.1002/nag.1610120105 | Zbl 0626.73117
[23] Suquet, P.-M.: Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci., Paris, Sér. A 286 (1978), French 1201-1204. MR 0501114
[24] Sysala, S.: Properties and simplifications of constitutive time-discretized elastoplastic operators. ZAMM, Z. Angew. Math. Mech. 94 (2014), 233-255. DOI 10.1002/zamm.201200056 | MR 3179702
[25] Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R.: Subdifferential-based implicit return-mapping operators in computational plasticity. ZAMM, Z. Angew. Math. Mech. 96 (2016), 1-21, DOI 10.1002/zamm.201500305. DOI 10.1002/zamm.201500305 | MR 3580287
[26] Sysala, S., Haslinger, J., Hlaváček, I., Cermak, M.: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: PART I -- discretization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 333-353. DOI 10.1002/zamm.201300112 | MR 3340908 | Zbl 1322.74055
[27] Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Montrouge (1983). MR 0711964
[28] Yu, X., Tin-Loi, F.: A simple mixed finite element for static limit analysis. Comput. Struct. 84 (2006), 1906-1917. DOI 10.1016/j.compstruc.2006.08.019
[29] Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method. Vol. 2. Solid Mechanics. Butterworth-Heinemann, Oxford (2000). MR 1897986
Partner of
EuDML logo